Updated BioCyc iOS App now
available in iTunes store
Updated BioCyc iOS App now
available in iTunes store
Updated BioCyc iOS App now
available in iTunes store
Updated BioCyc iOS App now
available in iTunes store
Updated BioCyc iOS App now
available in iTunes store

MetaCyc Pathway: glycine betaine degradation I
Traceable author statement to experimental support

Enzyme View:

Pathway diagram: glycine betaine degradation I

This view shows enzymes only for those organisms listed below, in the list of taxa known to possess the pathway. If an enzyme name is shown in bold, there is experimental evidence for this enzymatic activity.

Superclasses: Degradation/Utilization/AssimilationAmines and Polyamines DegradationGlycine Betaine Degradation

Some taxa known to possess this pathway include : Aphanothece halophytica, Arthrobacter, Corynebacterium sp., Pseudomonas aeruginosa, Pseudomonas putida, Rattus norvegicus, Sinorhizobium meliloti Rm2011

Expected Taxonomic Range: Archaea, Bacteria , Eukaryota

Glycine betaine (N,N,N-trimethylglycine) is a very efficient osmolyte found in a wide range of bacteria and plants, where it is accumulated at high cytoplasmic concentrations in response to osmotic stress, to act as an osmoprotectant [Osteras98].

Many organisms are also able to catabolize glycine betaine, using it as a sole source for both carbon and nitrogen [Smith88a, Lisa83].

The degradation of glycine betaine, as well as its potential precursor, choline, have been proposed to exist as a mechanism for osmoregulation in Sinorhizobium meliloti and other organisms. When the bacteria grow at inhibitory osmolarity the enzyme activities that lead to glycine betaine degradation decrease, while the enzyme activities that convert choline to glycine betaine either remain constant or increase. In this way, a high concentration of glycine betaine can be maintained in osmotically stressed cells [Bernard86, Smith88a].

The degradation of glycine betaine proceeds by sequential demethylation [Bernard86, Smith88a]. The first methyl group is removed by glycine betaine transmethylase, producing N,N-dimethylglycine (DMG). The second methyl group is removed by the enzyme dimethylglycine dehydrogenase, forming N-methylglycine, or sarcosine, and the third methyl is removed by sarcosine oxidase (or in some organisms, monomethylglycine dehydrogenase), producing glycine and formaldehyde.

Sarcosine oxidase is a complex enzyme, containing four cofactors, one of which is tetrahydrofolate (THF). In the presence of THF the enzyme does not produce formaldehyde, but instead transfers the single carbon unit to THF, resulting in glycine and methylenetetrahydrofolate. Glycine and methylenetetrahydrofolate are the substrates of the enzyme serine hydroxymethyltransferase, which removes the single carbon unit from methylenetetrahydrofolate and transfers it to glycine, producing L-serine. Since at least in some cases the gene encoding the serine hydroxymethyltransferase is adjacent to the genes encoding the sarcosine oxidase subunits, it is very likely that L-serine is indeed the final product of this degradation pathway [Wagner97]. Much work has been done with sarcosine oxidase from Corynebacterium sp. P-1 [Chlumsky93, Chlumsky95, Willie96, Eschenbrenner01], but similar enzymes from other organisms have also been characterized [Meskys01].

Variants: glycine betaine degradation II (mammalian)

Created 17-May-2005 by Caspi R, SRI International


Bernard86: Bernard, T., Pocard, J. A., Perroud, B., Le Rudulier, D. (1986). "Variations in the response of salt-stressed Rhizobium strains to betaines." Arch. Microbiol. 143:359-364.

Chlumsky93: Chlumsky LJ, Zhang L, Ramsey AJ, Jorns MS (1993). "Preparation and properties of recombinant corynebacterial sarcosine oxidase: evidence for posttranslational modification during turnover with sarcosine." Biochemistry 32(41);11132-42. PMID: 7692961

Chlumsky95: Chlumsky LJ, Zhang L, Jorns MS (1995). "Sequence analysis of sarcosine oxidase and nearby genes reveals homologies with key enzymes of folate one-carbon metabolism." J Biol Chem 270(31);18252-9. PMID: 7543100

Eschenbrenner01: Eschenbrenner M, Chlumsky LJ, Khanna P, Strasser F, Jorns MS (2001). "Organization of the multiple coenzymes and subunits and role of the covalent flavin link in the complex heterotetrameric sarcosine oxidase." Biochemistry 40(18);5352-67. PMID: 11330998

Lisa83: Lisa TA, Garrido MN, Domenech CE (1983). "Induction of acid phosphatase and cholinesterase activities in Ps. aeruginosa and their in-vitro control by choline, acetylcholine and betaine." Mol Cell Biochem 50(2);149-55. PMID: 6406829

Meskys01: Meskys R, Harris RJ, Casaite V, Basran J, Scrutton NS (2001). "Organization of the genes involved in dimethylglycine and sarcosine degradation in Arthrobacter spp.: implications for glycine betaine catabolism." Eur J Biochem 268(12);3390-8. PMID: 11422368

Osteras98: Osteras M, Boncompagni E, Vincent N, Poggi MC, Le Rudulier D (1998). "Presence of a gene encoding choline sulfatase in Sinorhizobium meliloti bet operon: choline-O-sulfate is metabolized into glycine betaine." Proc Natl Acad Sci U S A 1998;95(19);11394-9. PMID: 9736747

Smith88a: Smith LT, Pocard JA, Bernard T, Le Rudulier D (1988). "Osmotic control of glycine betaine biosynthesis and degradation in Rhizobium meliloti." J Bacteriol 170(7);3142-9. PMID: 3290197

Wagner97: Wagner MA, Schuman Jorns M (1997). "Folate utilization by monomeric versus heterotetrameric sarcosine oxidases." Arch Biochem Biophys 342(1);176-81. PMID: 9185627

Willie96: Willie A, Edmondson DE, Jorns MS (1996). "Sarcosine oxidase contains a novel covalently bound FMN." Biochemistry 35(16);5292-9. PMID: 8611516

Other References Related to Enzymes, Genes, Subpathways, and Substrates of this Pathway

Anfora07: Anfora AT, Haugen BJ, Roesch P, Redford P, Welch RA (2007). "Roles of serine accumulation and catabolism in the colonization of the murine urinary tract by Escherichia coli CFT073." Infect Immun 75(11);5298-304. PMID: 17785472

Angelaccio92: Angelaccio S, Pascarella S, Fattori E, Bossa F, Strong W, Schirch V (1992). "Serine hydroxymethyltransferase: origin of substrate specificity." Biochemistry 31(1);155-62. PMID: 1731867

Baggott00: Baggott JE (2000). "Hydrolysis of 5,10-methenyltetrahydrofolate to 5-formyltetrahydrofolate at pH 2.5 to 4.5." Biochemistry 39(47);14647-53. PMID: 11087421

Beckmann97: Beckmann K, Dzuibany C, Biehler K, Fock H, Hell R, Migge A, Becker TW (1997). "Photosynthesis and fluorescence quenching, and the mRNA levels of plastidic glutamine synthetase or of mitochondrial serine hydroxymethyltransferase (SHMT) in the leaves of the wild-type and of the SHMT-deficient stm mutant of Arabidopsis thaliana in relation to the rate of photorespiration." Planta 202(3);379-86. PMID: 9232907

Benziman60: Benziman, M, Sagers, RD, Gunzalus, IC (1960). "L-serine specific dehydrase from Clostridium acidi-urici." J Bacteriol 79;474-9. PMID: 13848074

BRENDA14: BRENDA team (2014). Imported from BRENDA version existing on Aug 2014.

Brizio00: Brizio C, Otto A, Brandsch R, Passarella S, Barile M (2000). "A protein factor of rat liver mitochondrial matrix involved in flavinylation of dimethylglycine dehydrogenase." Eur J Biochem 267(14);4346-54. PMID: 10880957

Brizio04: Brizio C, Brandsch R, Bufano D, Pochini L, Indiveri C, Barile M (2004). "Over-expression in Escherichia coli, functional characterization and refolding of rat dimethylglycine dehydrogenase." Protein Expr Purif 37(2);434-42. PMID: 15358367

Burman04: Burman JD, Harris RL, Hauton KA, Lawson DM, Sawers RG (2004). "The iron-sulfur cluster in the L-serine dehydratase TdcG from Escherichia coli is required for enzyme activity." FEBS Lett 576(3);442-4. PMID: 15498577

Capela01: Capela D, Barloy-Hubler F, Gouzy J, Bothe G, Ampe F, Batut J, Boistard P, Becker A, Boutry M, Cadieu E, Dreano S, Gloux S, Godrie T, Goffeau A, Kahn D, Kiss E, Lelaure V, Masuy D, Pohl T, Portetelle D, Puhler A, Purnelle B, Ramsperger U, Renard C, Thebault P, Vandenbol M, Weidner S, Galibert F (2001). "Analysis of the chromosome sequence of the legume symbiont Sinorhizobium meliloti strain 1021." Proc Natl Acad Sci U S A 98(17);9877-82. PMID: 11481430

Carter72: Carter JE, Sagers RD (1972). "Ferrous ion-dependent L-serine dehydratase from Clostridium acidiurici." J Bacteriol 109(2);757-63. PMID: 5058451

Chen94: Chen D, Swenson RP (1994). "Cloning, sequence analysis, and expression of the genes encoding the two subunits of the methylotrophic bacterium W3A1 electron transfer flavoprotein." J Biol Chem 269(51);32120-30. PMID: 7798207

Chistoserdova94: Chistoserdova LV, Lidstrom ME (1994). "Genetics of the serine cycle in Methylobacterium extorquens AM1: cloning, sequence, mutation, and physiological effect of glyA, the gene for serine hydroxymethyltransferase." J Bacteriol 176(21);6759-62. PMID: 7961431

Cicchillo04: Cicchillo RM, Baker MA, Schnitzer EJ, Newman EB, Krebs C, Booker SJ (2004). "Escherichia coli L-serine deaminase requires a [4Fe-4S] cluster in catalysis." J Biol Chem 279(31);32418-25. PMID: 15155761

Contestabile00: Contestabile R, Angelaccio S, Bossa F, Wright HT, Scarsdale N, Kazanina G, Schirch V (2000). "Role of tyrosine 65 in the mechanism of serine hydroxymethyltransferase." Biochemistry 39(25);7492-500. PMID: 10858298

Cook85a: Cook RJ, Misono KS, Wagner C (1985). "The amino acid sequences of the flavin-peptides of dimethylglycine dehydrogenase and sarcosine dehydrogenase from rat liver mitochondria." J Biol Chem 260(24);12998-3002. PMID: 4055729

Cook86: Cook RJ, Wagner C (1986). "Dimethylglycine dehydrogenase and sarcosine dehydrogenase: mitochondrial folate-binding proteins from rat liver." Methods Enzymol 122;255-60. PMID: 3702694

DelgadoReyes01: Delgado-Reyes CV, Wallig MA, Garrow TA (2001). "Immunohistochemical detection of betaine-homocysteine S-methyltransferase in human, pig, and rat liver and kidney." Arch Biochem Biophys 393(1);184-6. PMID: 11516176

Delle94: Delle Fratte S, Iurescia S, Angelaccio S, Bossa F, Schirch V (1994). "The function of arginine 363 as the substrate carboxyl-binding site in Escherichia coli serine hydroxymethyltransferase." Eur J Biochem 225(1);395-401. PMID: 7925461

Drabikowska67: Drabikowska AK (1967). "The reduction of ubiquinone by sarcosine dehydrogenase system." Acta Biochim Pol 14(2);241-7. PMID: 4291509

Showing only 20 references. To show more, press the button "Show all references".

Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of MetaCyc: Caspi et al, Nucleic Acids Research 42:D459-D471 2014
Page generated by Pathway Tools version 19.5 (software by SRI International) on Sat Feb 6, 2016, biocyc11.