Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
BioCyc websites down
12/28 - 12/31
for maintenance.
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
BioCyc websites down
12/28 - 12/31
for maintenance.
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
BioCyc websites down
12/28 - 12/31
for maintenance.
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
BioCyc websites down
12/28 - 12/31
for maintenance.
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
BioCyc websites down
12/28 - 12/31
for maintenance.
twitter

MetaCyc Pathway: pelargonidin conjugates biosynthesis

Enzyme View:

This view shows enzymes only for those organisms listed below, in the list of taxa known to possess the pathway. If an enzyme name is shown in bold, there is experimental evidence for this enzymatic activity.

Superclasses: Biosynthesis Secondary Metabolites Biosynthesis Phenylpropanoid Derivatives Biosynthesis Flavonoids Biosynthesis Anthocyanins Biosynthesis

Some taxa known to possess this pathway include ? : Dahlia pinnata , Glandularia x hybrida , Perilla frutescens , Silene dioica

Expected Taxonomic Range: Magnoliophyta

Summary:
General Background

Anthocyanins are produced in two distinguished sets of reactions, the first one (early-stage) leading to the first stable anthocyanidin, i.e. anthocyanidin-3-O-glucosides (anthocyanin biosynthesis (cyanidin 3-O-glucoside)) and the second one (late-stage) comprising further modification of those compounds such as glycosylation, acylation and methylation (this pathway). These late-stage reactions are concerned with fine adjustment for a variety of floral color which is diverse and less understood than the steps involved in the early-stage reactions [Yamazaki99] [YonekuraSakakib00].

The decoration of pelargonidin (this pathway) is typical for a variety of plants such as Perilla frutescens, Glandularia x hybrida,Silene dioica [Yamazaki99] and Dahlia pinnata [Suzuki02a]. Many of the above mentioned plants are characterized by anthocyanins that are intermediately 5-O-glucosylated.

About This Pathway

All the modifications of the anthocyanidin-3-O-glucosides contribute to the stability of the anthocyanins and/or the refinement of the colors which appear in flowers and fruits. The 5-O-glucosylation of anthocyanidin-3-O-glucosides, catalyzed by the anthocyanin 5-O-glucosyltransferase (5-GT) does not significantly change the color of anthocyanins but is important for further modification of anthocyanin molecules [Yamazaki02] [Yamazaki99]. It has been discussed that these modifications increase the stability and color variation towards purple hues by inter- and intramolecular stacking of the anthocyanins with polyphenols [Brouillard94].

A significant contribution to intensification of color and color shift towards blue is accomplished by aromatic acylation with hydroxycinnamic acids of the anthocyanin molecules due to a bathochromic shift. The enzyme catalyzing this step, anthocyanin 3-O-glucoside-6"-O-acyltransferase has been characterized in Perilla frutescens [Fujiwara98a] [YonekuraSakakib00]. The exact metabolic succession of aromatic acylation (C-ring 3-position, A-ring 5-position) of the anthocyanin glucosides (mono-, diglucoside) is not known and may depend on the species involved (compare salvianin biosynthesis and gentiodelphin biosynthesis).

The other type of acylation that commonly contributes to furnish anthocyanins and many other secondary metabolites, i.e. aliphatic acylation, such as malonylation is thought to enhance pigment solubility in water, protect the anthocyanins from enzymatic degradation and facilitates the uptake of anthocyanins into vacuoles [Heller94]. The malonylation of anthocyanins, for instance catalyzed by the anthocyanidin 3-O-glucoside-6"-O-malonyltransferase [Suzuki02a] generally occurs under strict regiocontrol during the late stage of their biosynthesis.

Other modifications of the anthocyanins involve further glycosylations catalyzed by anthocyanidin 3-O-glucoside-6"-O-rhamnosyltransferase [Kamsteeg80] and anthocyanidin 3-O-rutinoside-5-O-glucosyltransferase [Kamsteeg78]. Rhamnosylation appears to be a frequent step altering the structure of compounds and the nucleoside has been shown to be produced in plants, e.g. in red campion [Kamsteeg78a].

Superpathways: superpathway of anthocyanin biosynthesis (from pelargonidin 3-O-glucoside)

Credits:
Created 10-Mar-2006 by Foerster H , TAIR


References

Brouillard94: Brouillard R, Dangles O (1994). "Flavonoids and flower colour." In: Harborne JB (editor) The flavonoids: Advances in research since 1986; Chapman and Hall, London , 565-588.

Fujiwara98a: Fujiwara H, Tanaka Y, Fukui Y, Ashikari T, Yamaguchi M, Kusumi T (1998). "Purification and characterization of anthocyanin 3-aromatic acyltransferase from Perilla frutescens." Plant Science, 137, 87-94.

Heller94: Heller W, Forkmann G (1994). "Biosynthesis of flavonoids." In: Harborne JB (editor) The flavonoids. Advances in research since 1986. Chapman & Hall, London Glasgow New York Tokyo Melbourne Madras, 499-537.

Kamsteeg78: Kamsteeg J, van Brederode J, van Nigtevecht G (1978). "Identification, properties, and genetic control of UDP-glucose: cyanidin-3-rhamnosyl-(1 leads to 6)-glucoside-5-O-glucosyltransferase isolated from petals of the red campion (Silene dioica)." Biochem Genet 16(11-12);1059-71. PMID: 751641

Kamsteeg78a: Kamsteeg J, Van Brederode J, Van Nigtevecht G (1978). "The formation of UDP-L-rhamnose from UDP-D-glucose by an enzyme preparation of red campion (Silene dioica (L) Clairv) leaves." FEBS Lett 91(2);281-4. PMID: 680134

Kamsteeg80: Kamsteeg J, Van Brederode J, Van Nigtevecht G (1980). "Identification, properties and genetic control of UDP-L-rhamnose:anthocyanidin 3-O-glucoside, 6"-O-rhamnosyltransferase isolated from petals of the red campion (Silene dioica)." Z. Naturforsch., 35c, 249-257.

Suzuki02a: Suzuki H, Nakayama T, Yonekura-Sakakibara K, Fukui Y, Nakamura N, Yamaguchi MA, Tanaka Y, Kusumi T, Nishino T (2002). "cDNA cloning, heterologous expressions, and functional characterization of malonyl-coenzyme a:anthocyanidin 3-o-glucoside-6"-o-malonyltransferase from dahlia flowers." Plant Physiol 130(4);2142-51. PMID: 12481098

Yamazaki02: Yamazaki M, Yamagishi E, Gong Z, Fukuchi-Mizutani M, Fukui Y, Tanaka Y, Kusumi T, Yamaguchi M, Saito K (2002). "Two flavonoid glucosyltransferases from Petunia hybrida: molecular cloning, biochemical properties and developmentally regulated expression." Plant Mol Biol 48(4);401-11. PMID: 11905966

Yamazaki99: Yamazaki M, Gong Z, Fukuchi-Mizutani M, Fukui Y, Tanaka Y, Kusumi T, Saito K (1999). "Molecular cloning and biochemical characterization of a novel anthocyanin 5-O-glucosyltransferase by mRNA differential display for plant forms regarding anthocyanin." J Biol Chem 274(11);7405-11. PMID: 10066805

YonekuraSakakib00: Yonekura-Sakakibara K, Tanaka Y, Fukuchi-Mizutani M, Fujiwara H, Fukui Y, Ashikari T, Murakami Y, Yamaguchi M, Kusumi T (2000). "Molecular and biochemical characterization of a novel hydroxycinnamoyl-CoA: anthocyanin 3-O-glucoside-6"-O-acyltransferase from Perilla frutescens." Plant Cell Physiol 41(4);495-502. PMID: 10845463

Other References Related to Enzymes, Genes, Subpathways, and Substrates of this Pathway

Latendresse13: Latendresse M. (2013). "Computing Gibbs Free Energy of Compounds and Reactions in MetaCyc."

Lazarowski03: Lazarowski ER, Shea DA, Boucher RC, Harden TK (2003). "Release of cellular UDP-glucose as a potential extracellular signaling molecule." Mol Pharmacol 63(5);1190-7. PMID: 12695547

Matsuba10: Matsuba Y, Sasaki N, Tera M, Okamura M, Abe Y, Okamoto E, Nakamura H, Funabashi H, Takatsu M, Saito M, Matsuoka H, Nagasawa K, Ozeki Y (2010). "A novel glucosylation reaction on anthocyanins catalyzed by acyl-glucose-dependent glucosyltransferase in the petals of carnation and delphinium." Plant Cell 22(10);3374-89. PMID: 20971893

Rubio06: Rubio S, Larson TR, Gonzalez-Guzman M, Alejandro S, Graham IA, Serrano R, Rodriguez PL (2006). "An Arabidopsis mutant impaired in coenzyme A biosynthesis is sugar dependent for seedling establishment." Plant Physiol 140(3);830-43. PMID: 16415216

Suzuki04a: Suzuki H, Nakayama T, Yamaguchi M, Nishino T (2004). "cDNA cloning and characterization of two Dendranthema morifolium anthocyanin malonyltransferases with different functional activities." Plant Science 166:89-96.


Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of MetaCyc: Caspi et al, Nucleic Acids Research 42:D459-D471 2014
Page generated by SRI International Pathway Tools version 18.5 on Sat Dec 20, 2014, BIOCYC13B.