Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
twitter

MetaCyc Pathway: tetrapyrrole biosynthesis I (from glutamate)

Enzyme View:

This view shows enzymes only for those organisms listed below, in the list of taxa known to possess the pathway. If an enzyme name is shown in bold, there is experimental evidence for this enzymatic activity.

Superclasses: Biosynthesis Cofactors, Prosthetic Groups, Electron Carriers Biosynthesis Tetrapyrrole Biosynthesis

Some taxa known to possess this pathway include ? : Arabidopsis thaliana col , Escherichia coli K-12 substr. MG1655 , Euglena gracilis , Nicotiana tabacum , Pseudomonas denitrificans , Salmonella enterica enterica serovar Typhimurium , Triticum aestivum

Expected Taxonomic Range: Archaea , Cyanobacteria , Euglenozoa , Magnoliophyta , Proteobacteria

Summary:
Tetrapyrroles are compounds whose molecules have four rings of the pyrrole type, generally linked together by single-atom bridges between the alpha positions of the five-membered pyrrole rings. Tetrapyrroles function as a metal-binding cofactor in many important enzymes, proteins and pigments, such as heme, chlorophyll, cobalamine (vitamin B12), siroheme, and cofator F430. The biosynthesis of all of these cofactors start in a similar manner, with the production of the intermediate uroporphyrinogen-III. This intermediate is an important branch point: its methylation directs it toward siroheme, cobalamin or cofactor F430 synthesis, while decarboxylation directs it toward the synthesis of heme and chlorophyll [Phillips03].

The tetrapyrrole biosynthetic pathway shown here, which starts with glutamate, is found in plants, many bacteria (including Escherichia coli), and the archaea. A second tetrapyrrole biosynthetic pathway, which is found in animals, fungi, certain protozoans, and members of the α-proteobacteria, starts with glycine and succinyl-coA (see tetrapyrrole biosynthesis II (from glycine)). Interestingly, both pathways are present in the chloroplast-containing protozoan Euglena gracilis.

Regardless whether the starting point is glycine or glutamate, both pathways converge at the intermediate 5-aminolevulinate and proceed through the important intermediate uroporphyrinogen-III, which is a major branch point that leads to biosynthesis of different tetrapyrrole compounds, such as the corrinoid cobalamine (vitamin B12) (see MetaCyc pathway adenosylcobalamin biosynthesis II (late cobalt incorporation)), the methanogenic coenzyme F430 (see factor 430 biosynthesis), siroheme (see siroheme biosynthesis, and heme D.

Superpathways: superpathay of heme biosynthesis from glutamate , adenosylcobalamin biosynthesis II (late cobalt incorporation) , adenosylcobalamin biosynthesis I (early cobalt insertion)

Variants: tetrapyrrole biosynthesis II (from glycine)

Unification Links: EcoCyc:PWY-5188

Credits:
Created 15-May-2006 by Caspi R , SRI International


References

Phillips03: Phillips JD, Whitby FG, Kushner JP, Hill CP (2003). "Structural basis for tetrapyrrole coordination by uroporphyrinogen decarboxylase." EMBO J 22(23);6225-33. PMID: 14633982

Warren90: Warren MJ, Scott AI (1990). "Tetrapyrrole assembly and modification into the ligands of biologically functional cofactors." Trends Biochem Sci 15(12);486-91. PMID: 2077690

Other References Related to Enzymes, Genes, Subpathways, and Substrates of this Pathway

Al12: Al Mamun AA, Lombardo MJ, Shee C, Lisewski AM, Gonzalez C, Lin D, Nehring RB, Saint-Ruf C, Gibson JL, Frisch RL, Lichtarge O, Hastings PJ, Rosenberg SM (2012). "Identity and function of a large gene network underlying mutagenic repair of DNA breaks." Science 338(6112);1344-8. PMID: 23224554

Alefounder88: Alefounder PR, Abell C, Battersby AR (1988). "The sequence of hemC, hemD and two additional E. coli genes." Nucleic Acids Res 16(20);9871. PMID: 3054815

Alwan89: Alwan AF, Mgbeje BI, Jordan PM (1989). "Purification and properties of uroporphyrinogen III synthase (co-synthase) from an overproducing recombinant strain of Escherichia coli K-12." Biochem J 264(2);397-402. PMID: 2557837

Anderson79: Anderson PM, Desnick RJ (1979). "Purification and properties of delta-aminolevulinate dehydrase from human erythrocytes." J Biol Chem 254(15);6924-30. PMID: 457661

Avissar89: Avissar YJ, Beale SI (1989). "Identification of the enzymatic basis for delta-aminolevulinic acid auxotrophy in a hemA mutant of Escherichia coli." J Bacteriol 171(6);2919-24. PMID: 2656630

Balg07: Balg C, Blais SP, Bernier S, Huot JL, Couture M, Lapointe J, Chenevert R (2007). "Synthesis of beta-ketophosphonate analogs of glutamyl and glutaminyl adenylate, and selective inhibition of the corresponding bacterial aminoacyl-tRNA synthetases." Bioorg Med Chem 15(1);295-304. PMID: 17049867

Banerjee04: Banerjee R, Dubois DY, Gauthier J, Lin SX, Roy S, Lapointe J (2004). "The zinc-binding site of a class I aminoacyl-tRNA synthetase is a SWIM domain that modulates amino acid binding via the tRNA acceptor arm." Eur J Biochem 271(4);724-33. PMID: 14764088

Battersby80: Battersby AR, Fookes CJ, Matcham GW, McDonald E (1980). "Biosynthesis of the pigments of life: formation of the macrocycle." Nature 285(5759);17-21. PMID: 6769048

Bernier05: Bernier S, Dubois DY, Habegger-Polomat C, Gagnon LP, Lapointe J, Chenevert R (2005). "Glutamylsulfamoyladenosine and pyroglutamylsulfamoyladenosine are competitive inhibitors of E. coli glutamyl-tRNA synthetase." J Enzyme Inhib Med Chem 20(1);61-7. PMID: 15895686

Bollivar04: Bollivar DW, Clauson C, Lighthall R, Forbes S, Kokona B, Fairman R, Kundrat L, Jaffe EK (2004). "Rhodobacter capsulatus porphobilinogen synthase, a high activity metal ion independent hexamer." BMC Biochem 5;17. PMID: 15555082

BRENDA14: BRENDA team (2014). "Imported from BRENDA version existing on Aug 2014." http://www.brenda-enzymes.org.

Breton86: Breton R, Sanfacon H, Papayannopoulos I, Biemann K, Lapointe J (1986). "Glutamyl-tRNA synthetase of Escherichia coli. Isolation and primary structure of the gltX gene and homology with other aminoacyl-tRNA synthetases." J Biol Chem 261(23);10610-7. PMID: 3015933

Brun90: Brun YV, Sanfacon H, Breton R, Lapointe J (1990). "Closely spaced and divergent promoters for an aminoacyl-tRNA synthetase gene and a tRNA operon in Escherichia coli. Transcriptional and post-transcriptional regulation of gltX, valU and alaW." J Mol Biol 214(4);845-64. PMID: 2201777

Cantoni84: Cantoni L, Dal Fiume D, Ruggieri R (1984). "Decarboxylation of uroporphyrinogen I and III in 2,3,7,8-tetrachlorodibenzo-p-dioxin induced porphyria in mice." Int J Biochem 16(5);561-5. PMID: 6724109

Curnow98: Curnow AW, Tumbula DL, Pelaschier JT, Min B, Soll D (1998). "Glutamyl-tRNA(Gln) amidotransferase in Deinococcus radiodurans may be confined to asparagine biosynthesis." Proc Natl Acad Sci U S A 95(22);12838-43. PMID: 9789001

Dasgupta09: Dasgupta S, Saha R, Dey C, Banerjee R, Roy S, Basu G (2009). "The role of the catalytic domain of E. coli GluRS in tRNAGln discrimination." FEBS Lett 583(12);2114-20. PMID: 19481543

Dasgupta12: Dasgupta S, Manna D, Basu G (2012). "Structural and functional consequences of mutating a proteobacteria-specific surface residue in the catalytic domain of Escherichia coli GluRS." FEBS Lett 586(12);1724-30. PMID: 22584057

DiazMejia09: Diaz-Mejia JJ, Babu M, Emili A (2009). "Computational and experimental approaches to chart the Escherichia coli cell-envelope-associated proteome and interactome." FEMS Microbiol Rev 33(1);66-97. PMID: 19054114

Drolet89: Drolet M, Peloquin L, Echelard Y, Cousineau L, Sasarman A (1989). "Isolation and nucleotide sequence of the hemA gene of Escherichia coli K12." Mol Gen Genet 216(2-3);347-52. PMID: 2664455

Dubois04: Dubois DY, Blaise M, Becker HD, Campanacci V, Keith G, Giege R, Cambillau C, Lapointe J, Kern D (2004). "An aminoacyl-tRNA synthetase-like protein encoded by the Escherichia coli yadB gene glutamylates specifically tRNAAsp." Proc Natl Acad Sci U S A 101(20);7530-5. PMID: 15096594

Showing only 20 references. To show more, press the button "Show all references".


Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of MetaCyc: Caspi et al, Nucleic Acids Research 42:D459-D471 2014
Page generated by SRI International Pathway Tools version 18.5 on Fri Nov 21, 2014, biocyc14.