MetaCyc Pathway: glycolysis II (from fructose 6-phosphate)
Traceable author statement to experimental support

Pathway diagram: glycolysis II (from fructose 6-phosphate)

If an enzyme name is shown in bold, there is experimental evidence for this enzymatic activity.

Superclasses: Generation of Precursor Metabolites and EnergyGlycolysis

Some taxa known to possess this pathway include : Escherichia coli K-12 substr. MG1655, Streptococcus mutans

Expected Taxonomic Range: Archaea, Bacteria , Eukaryota

General Background

Glycolysis, which was first studied as a pathway for the utilization of glucose, is one of the major pathways of central metabolism, the other two being the pentose phosphate pathway and the TCA cycle. Glycolysis is essential under all conditions of growth, because it produces six of the 13 precursor metabolites that are the starting materials for the biosynthesis of building blocks for macromolecules and other needed small molecules (the six compounds are β-D-glucose 6-phosphate, β-D-fructofuranose 6-phosphate, glycerone phosphate, 3-phospho-D-glycerate, phosphoenolpyruvate, and pyruvate). Glycolysis can be found, if at least in part, in almost all organisms.

Even though glycolysis is often described starting with glucose, other hexoses (e.g. fructose) can also serve as input (as its name implies - glycose is a general term for simple sugars).

Glycolysis has evolved to fulfill two essential functions:

i) it oxidizes hexoses to generate ATP, reductants and pyruvate, and

ii) being an amphibolic pathway (pathway that involves both catabolism and anabolism), it can reversibly produce hexoses from various low-molecular weight molecules.

Because various degradation pathways feed into glycolysis at many different points, glycolysis or portions of it run in the forward or reverse direction, depending on the carbon source being utilized, in order to satisfy the cell's need for precursor metabolites and energy. This switching of direction is possible because all but two of the enzymatic reactions comprising glycolysis are reversible, and the conversions catalyzed by the two exceptions are rendered functionally reversible by other enzymes ( fructose-1,6-bisphosphatase and phosphoenolpyruvate synthetase) that catalyze different irreversible reactions flowing in the opposite direction.

About This Pathway

The standard glycolysis pathway ( glycolysis I (from glucose 6-phosphate)) depicts the sugar input into the pathway as glucose. However, the glycolysis pathway is utilized for the degradation of many different types of sugars.

This partial depiction of the glycolysis pathway is used with substrates other than glucose, such as D-allose, L-sorbopyranose , D-mannitol , D-sorbitol , D-mannose and sucrose, which are processed into β-D-fructofuranose 6-phosphate. D-fructose 6-phosphate enters glycolysis and is processed to the end product pyruvate, which is often fermented further into fermentation products such as ethanol, lactate and acetate.

Superpathways: superpathway of N-acetylneuraminate degradation, superpathway of hexitol degradation (bacteria), hexitol fermentation to lactate, formate, ethanol and acetate, superpathway of anaerobic sucrose degradation

Variants: glycolysis I (from glucose 6-phosphate), glycolysis III (from glucose), glycolysis IV (plant cytosol), glycolysis V (Pyrococcus)

Unification Links: EcoCyc:PWY-5484

Created 30-Mar-2009 by Caspi R, SRI International


ECOSAL: EcoSal "Escherichia coli and Salmonella: Cellular and Molecular Biology." Online edition.

Ewaschuk05: Ewaschuk JB, Naylor JM, Zello GA (2005). "D-lactate in human and ruminant metabolism." J Nutr 135(7);1619-25. PMID: 15987839

Other References Related to Enzymes, Genes, Subpathways, and Substrates of this Pathway

Abbe83: Abbe K, Takahashi S, Yamada T (1983). "Purification and properties of pyruvate kinase from Streptococcus sanguis and activator specificity of pyruvate kinase from oral streptococci." Infect Immun 39(3);1007-14. PMID: 6840832

Aguilera09: Aguilera L, Gimenez R, Badia J, Aguilar J, Baldoma L (2009). "NAD+-dependent post-translational modification of Escherichia coli glyceraldehyde-3-phosphate dehydrogenase." Int Microbiol 12(3);187-92. PMID: 19784925

AitBara10: Ait-Bara S, Carpousis AJ (2010). "Characterization of the RNA degradosome of Pseudoalteromonas haloplanktis: conservation of the RNase E-RhlB interaction in the gammaproteobacteria." J Bacteriol 192(20);5413-23. PMID: 20729366

Ajdic02: Ajdic D, McShan WM, McLaughlin RE, Savic G, Chang J, Carson MB, Primeaux C, Tian R, Kenton S, Jia H, Lin S, Qian Y, Li S, Zhu H, Najar F, Lai H, White J, Roe BA, Ferretti JJ (2002). "Genome sequence of Streptococcus mutans UA159, a cariogenic dental pathogen." Proc Natl Acad Sci U S A 99(22);14434-9. PMID: 12397186

Al04: Al Zaid Siddiquee K, Arauzo-Bravo MJ, Shimizu K (2004). "Metabolic flux analysis of pykF gene knockout Escherichia coli based on 13C-labeling experiments together with measurements of enzyme activities and intracellular metabolite concentrations." Appl Microbiol Biotechnol 63(4);407-17. PMID: 12802531

Alakent11: Alakent B, Baskan S, Doruker P (2011). "Effect of ligand binding on the intraminimum dynamics of proteins." J Comput Chem 32(3);483-96. PMID: 20730777

Albery76: Albery WJ, Knowles JR (1976). "Free-energy profile of the reaction catalyzed by triosephosphate isomerase." Biochemistry 15(25);5627-31. PMID: 999838

Albin84: Albin R, Silverman PM (1984). "Physical and genetic structure of the glpK-cpxA interval of the Escherichia coli K-12 chromosome." Mol Gen Genet 197(2);261-71. PMID: 6097795

Alefounder89: Alefounder PR, Baldwin SA, Perham RN, Short NJ (1989). "Cloning, sequence analysis and over-expression of the gene for the class II fructose 1,6-bisphosphate aldolase of Escherichia coli." Biochem J 1989;257(2);529-34. PMID: 2649077

Alefounder89a: Alefounder PR, Perham RN (1989). "Identification, molecular cloning and sequence analysis of a gene cluster encoding the class II fructose 1,6-bisphosphate aldolase, 3-phosphoglycerate kinase and a putative second glyceraldehyde 3-phosphate dehydrogenase of Escherichia coli." Mol Microbiol 3(6);723-32. PMID: 2546007

Alvarez98: Alvarez M, Zeelen JP, Mainfroid V, Rentier-Delrue F, Martial JA, Wyns L, Wierenga RK, Maes D (1998). "Triose-phosphate isomerase (TIM) of the psychrophilic bacterium Vibrio marinus. Kinetic and structural properties." J Biol Chem 273(4);2199-206. PMID: 9442062

Anderson69a: Anderson A, Cooper RA (1969). "Gluconeogenesis in Escherichia coli The role of triose phosphate isomerase." FEBS Lett 4(1);19-20. PMID: 11947134

Anderson75: Anderson L.E., Heinrikson R.L., Noyes C. "Chloroplast and cytoplasmic enzymes." Arch. Biochem. Biophys. (1975) 169:262-268.

Applebury70: Applebury ML, Johnson BP, Coleman JE (1970). "Phosphate binding to alkaline phosphatase. Metal ion dependence." J Biol Chem 245(19);4968-76. PMID: 4319108

Arifuzzaman06: Arifuzzaman M, Maeda M, Itoh A, Nishikata K, Takita C, Saito R, Ara T, Nakahigashi K, Huang HC, Hirai A, Tsuzuki K, Nakamura S, Altaf-Ul-Amin M, Oshima T, Baba T, Yamamoto N, Kawamura T, Ioka-Nakamichi T, Kitagawa M, Tomita M, Kanaya S, Wada C, Mori H (2006). "Large-scale identification of protein-protein interaction of Escherichia coli K-12." Genome Res 16(5);686-91. PMID: 16606699

Ashizawa91: Ashizawa K, McPhie P, Lin KH, Cheng SY (1991). "An in vitro novel mechanism of regulating the activity of pyruvate kinase M2 by thyroid hormone and fructose 1, 6-bisphosphate." Biochemistry 30(29);7105-11. PMID: 1854723


Auzat92: Auzat I, Garel JR (1992). "pH dependence of the reverse reaction catalyzed by phosphofructokinase I from Escherichia coli: implications for the role of Asp 127." Protein Sci 1(2);254-8. PMID: 1304907

Auzat94: Auzat I, Le Bras G, Garel JR (1994). "The cooperativity and allosteric inhibition of Escherichia coli phosphofructokinase depend on the interaction between threonine-125 and ATP." Proc Natl Acad Sci U S A 91(12);5242-6. PMID: 8202475

Auzat94a: Auzat I, Le Bras G, Branny P, De La Torre F, Theunissen B, Garel JR (1994). "The role of Glu187 in the regulation of phosphofructokinase by phosphoenolpyruvate." J Mol Biol 235(1);68-72. PMID: 7904653

Showing only 20 references. To show more, press the button "Show all references".

Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of MetaCyc: Caspi et al, Nucleic Acids Research 42:D459-D471 2014
Page generated by Pathway Tools version 19.5 (software by SRI International) on Sat Nov 28, 2015, biocyc13.