Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
twitter

MetaCyc Pathway: nonaprenyl diphosphate biosynthesis I

Enzyme View:

This view shows enzymes only for those organisms listed below, in the list of taxa known to possess the pathway. If an enzyme name is shown in bold, there is experimental evidence for this enzymatic activity.

Synonyms: solanesyl diphosphate biosynthesis, solanesyl pyrophosphate biosynthesis

Superclasses: Biosynthesis Cofactors, Prosthetic Groups, Electron Carriers Biosynthesis Polyprenyl Biosynthesis

Some taxa known to possess this pathway include ? : Acetobacter aceti , Acetobacter pasteurianus , Acinetobacter calcoaceticus anitratus , Actinomadura madurae , Actinomadura pelletieri , Actinopolyspora halophila , Alcaligenes viscolactis S-2 , Anabaena variabilis , Arthrobacter agilis , Arthrobacter aurescens , Arthrobacter citreus , Arthrobacter crystallopoietes , Arthrobacter globiformis , Arthrobacter ilicis , Arthrobacter oxydans , Arthrobacter polychromogenes , Arthrobacter protophormiae , Arthrobacter ramosus , Arthrobacter ureafaciens , Blastochloris viridis , Brevibacterium fuscum , Cellulomonas biazotea , Cellulomonas fimi , Cellulomonas flavigena , Cellulosimicrobium cellulans , Chlorogloeopsis fritschii , Chromohalobacter beijerinckii , Clavibacter michiganensis , Clavibacter michiganensis insidiosus , Clavibacter michiganensis nebraskensis , Clavibacter michiganensis sepedonicus , Corynebacterium ammoniagenes , Corynebacterium bovis , Corynebacterium callunae , Corynebacterium diphtheriae , Corynebacterium glutamicum , Corynebacterium matruchotii , Corynebacterium stationis , Corynebacterium variabile , Curtobacterium albidum , Curtobacterium citreum , Curtobacterium flaccumfaciens , Curtobacterium luteum , Delftia acidovorans , Dermatophilus congolensis , Desmonostoc muscorum , Enterococcus faecalis , Gordonia amarae , Gordonia bronchialis , Gordonia rubripertincta , Gordonia terrae , Halomonas halmophila , Halomonas halodenitrificans , Jonesia denitrificans , Lactococcus lactis , Lactococcus lactis cremoris , Mastigocladus laminosus , Micrococcus luteus , Mucor circinelloides , Mycobacterium avium , Mycobacterium avium paratuberculosis , Mycobacterium bovis , Mycobacterium farcinogenes , Mycobacterium fortuitum , Mycobacterium intracellulare , Mycobacterium kansasii , Mycobacterium phlei , Mycobacterium smegmatis , Mycobacterium tuberculosis , Odoribacter splanchnicus , Oerskovia turbata , Porphyromonas asaccharolytica , Porphyromonas levii , Promicromonospora citrea , Propionibacterium acidipropionici , Propionibacterium acnes , Propionibacterium freudenreichii shermanii , Pseudomonas aeruginosa , Pseudomonas fluorescens , Pseudomonas fragi , Pseudomonas putida , Rattus norvegicus , Rhodobacter capsulatus , Rhodobacter capsulatus SB 1003 , Rhodospirillum rubrum , Rubrivivax gelatinosus , Saccharopolyspora rectivirgula , Sinomonas atrocyanea , Stenotrophomonas maltophilia , Streptomyces albus , Streptomyces olivaceus , Streptomyces platensis , Streptomyces somaliensis , Streptomyces spiralis , Synechococcus elongatus , Synechococcus nidulans , Tsukamurella paurometabola , [Pseudomonas] geniculata

Expected Taxonomic Range: Archaea , Bacteria , Eukaryota

Summary:
Isoprenoids are among the most diverse and widely distributed natural compounds. They include both essential products (sterols, quinones, prenylated proteins, chlorophylls) and secondary metabolites (plant terpenoids and hormones) [Velayos04].

In this pathway geranyl diphosphate and multiple units of isopentenyl diphosphate (IPP) undergo a series of polymerizations to form a polyisoprenoid chain of nine units, known as all-trans-nonaprenyl diphosphate or solanesyl diphosphate.

The sequential addition of isoprenyl units to geranyl diphosphate is performed by polyprenyl diphosphate synthase enzymes such as the Rhodobacter capsulatus enzyme solanesyl diphosphate synthase.

Isoprenoid units are added to a maximal length that is determined by the specific enzyme. Most organisms generate polyprenyl chains of predominantly one length. Once completed, the polyprenyl chain is incorporated into other molecules, such as quinones. On the other hand, the enzyme that attaches the polyprenyl chain to the quinone precursor molecule does not have a preference towards a particular length. Thus, the length of the polyprenyl chain in the mature quinone molecule is determined by the predominant polyprenyl diphosphate synthase enzyme of the organism.

Quinones with nine isoprenyl units in the side chains are very common. They are the predominant form of plastoquinones, found in green plants and cyanobacteria, and are the major quinones in some large Gram-negative and Gram-positive genera, including the Pseudomonads and the Streptococci. For a review detailing the distribution of polyprenyl chain length in different bacteria, see [Collins81].

Nine-isoprenyl quinones are also found in many animals, including the rat.

Superpathways: superpathway of menaquinol-9 biosynthesis , superpathway of demethylmenaquinol-9 biosynthesis , superpathway of plastoquinol biosynthesis

Credits:
Created 13-Feb-2008 by Caspi R , SRI International


References

Collins81: Collins MD, Jones D (1981). "Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication." Microbiol Rev 45(2);316-54. PMID: 7022156

Meganathan01: Meganathan R (2001). "Ubiquinone biosynthesis in microorganisms." FEMS Microbiol Lett 203(2);131-9. PMID: 11583838

Velayos04: Velayos A, Fuentes-Vicente M, Aguilar-Elena R, Eslava AP, Iturriaga EA (2004). "A novel fungal prenyl diphosphate synthase in the dimorphic zygomycete Mucor circinelloides." Curr Genet 45(6);371-7. PMID: 15024605

Other References Related to Enzymes, Genes, Subpathways, and Substrates of this Pathway

Latendresse13: Latendresse M. (2013). "Computing Gibbs Free Energy of Compounds and Reactions in MetaCyc."

Okada97b: Okada K, Kamiya Y, Zhu X, Suzuki K, Tanaka K, Nakagawa T, Matsuda H, Kawamukai M (1997). "Cloning of the sdsA gene encoding solanesyl diphosphate synthase from Rhodobacter capsulatus and its functional expression in Escherichia coli and Saccharomyces cerevisiae." J Bacteriol 179(19);5992-8. PMID: 9324242


Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of MetaCyc: Caspi et al, Nucleic Acids Research 42:D459-D471 2014
Page generated by SRI International Pathway Tools version 18.5 on Mon Nov 24, 2014, biocyc14.