twitter

MetaCyc Pathway: autoinducer AI-2 biosynthesis II (Vibrio)

Enzyme View:

Pathway diagram: autoinducer AI-2 biosynthesis II (Vibrio)

This view shows enzymes only for those organisms listed below, in the list of taxa known to possess the pathway. If an enzyme name is shown in bold, there is experimental evidence for this enzymatic activity.

Superclasses: Biosynthesis Secondary Metabolites Biosynthesis Autoinducer Biosynthesis

Some taxa known to possess this pathway include ? : Aliivibrio fischeri , Vibrio cholerae , Vibrio harveyi

Expected Taxonomic Range: Vibrionales

Summary:
General Background

Cell-cell communication in bacteria is accomplished through the exchange of extracellular signalling molecules called autoinducers. This process, termed quorum sensing, allows bacterial populations to coordinate gene expression as a function of cell density. Many processes benefit from community cooperation, including bioluminescence, virulence factor expression, antibiotic production and biofilm development.

Autoinducer systems depend on two main components - the autoinducer and its receptor, which also functions as an autoinducer-dependent transcriptional regulator that binds DNA immediately upstream of the genes that are controlled.

Autoinducer systems have been implicated in regulation of various systems. For example, luxI/luxR of Aliivibrio fischeri regulate bioluminescence, luxM/luxN of Vibrio harveyi regulate bioluminescence and polyhydroxybutyrate biosynthesis, lasI/lasR of Pseudomonas aeruginosa regulates virulence factors, rhlI/rhlR of Pseudomonas aeruginosa regulates rhamnolipid synthesis as well as virulence factors, and traI/TraR of Agrobacterium tumefaciens regulates plasmid conjugal transfer [Fuqua96].

Several types of autoinducers are known. Gram-negative bacteria typically use acyl-homoserine lactones, known as type AI-1, as their autoinducers. The first autoinducer to be discovered was VAI-1, an AI-1 type compound from Aliivibrio fischeri [Eberhard81]. Many variants of AI-1 type inducers exist, differing from each other in the composition of the acyl moiety. In some cases, one organism may produce multiple types of acyl homoserine lactone type autoinducers, each produced by a dedicated synthase. A few examples are HAI-1 from Vibrio harveyi, AAI-1 from Agrobacterium tumefaciens, PAI-1 and PAI-1-2 from Pseudomonas aeruginosa and VAI-1 and VAI-1-2 from Aliivibrio fischeri [Fuqua96].

Another very common family of autoinducers include compounds produced from autoinducer 2, which was first described from the marine bacterium Vibrio harveyi, in which it is used to control luciferase expression [Bassler94, Surette99]. AI-2 type compounds are produced by a remarkably wide variety of Gram-negative and Gram-positive bacteria, leading to the proposal that AI-2 is a 'universal' signal that functions in interspecies cell-to-cell communication [Miller01a, Rezzonico08].

About This Pathway

The precursor of AI-2, autoinducer 2, is synthesized by the enzyme S-ribosylhomocysteine lyase, in a reaction that is also a step in the S-adenosyl-L-methionine cycle I pathway (SAM cycle). The enzyme converts S-ribosyl-L-homocysteine to L-homocysteine in a reaction that also produces autoinducer 2. Within the SAM cycle, the main product of the enzyme is the former compound. However, in organisms that produce an AI-2 autoinducer, autoinducer 2 is of major importance as it appears to be the last enzyme-generated precursor for AI-2, and is converted to the functional autoinducer in a series of chemical modifications without the help of any known enzyme.

The exact nature of the chemical transformations depends on the species. In Vibrionales the spontaneous transformations include cyclyzation to (2S,4S)-2-methyl-2,4-dihydroxydihydrofuran-3-one, hydration to (2S,4S)-2-methyl-2,3,3,4-tetrahydroxytetrahydrofuran, and finally, in the presence of free borate ions, complexation with the later to form the active autoinducer, (2S,4S)-2-methyl-2,3,3,4-tetrahydroxytetrahydrofuran-borate [Chen02e, Rezzonico08]. This particular form of the autoinducer appears to be unique to Vibrionales, which detect it using dedicated AI-2 receptors encoded by the luxP and luxQ genes [Bassler94, Reading06].

Other bacteria that produce AI-2 utilize a different form of the autoinducer. In those organisms autoinducer 2 appears to form a different stereoisomer, namely (2R,4S)-2-methyl-2,4-dihydroxydihydrofuran-3-one, which does not complex borate [Miller04a] (see autoinducer AI-2 biosynthesis I). The mechanism that controls which stereoisomer is formed is still not understood.

Credits:
Created 09-Mar-2009 by Caspi R , SRI International


References

Bassler94: Bassler BL, Wright M, Silverman MR (1994). "Multiple signalling systems controlling expression of luminescence in Vibrio harveyi: sequence and function of genes encoding a second sensory pathway." Mol Microbiol 13(2);273-86. PMID: 7984107

Chen02e: Chen X, Schauder S, Potier N, Van Dorsselaer A, Pelczer I, Bassler BL, Hughson FM (2002). "Structural identification of a bacterial quorum-sensing signal containing boron." Nature 415(6871);545-9. PMID: 11823863

Eberhard81: Eberhard A, Burlingame AL, Eberhard C, Kenyon GL, Nealson KH, Oppenheimer NJ (1981). "Structural identification of autoinducer of Photobacterium fischeri luciferase." Biochemistry 20(9);2444-9. PMID: 7236614

Fuqua96: Fuqua C, Winans SC, Greenberg EP (1996). "Census and consensus in bacterial ecosystems: the LuxR-LuxI family of quorum-sensing transcriptional regulators." Annu Rev Microbiol 50;727-51. PMID: 8905097

Miller01a: Miller MB, Bassler BL (2001). "Quorum sensing in bacteria." Annu Rev Microbiol 55;165-99. PMID: 11544353

Miller04a: Miller ST, Xavier KB, Campagna SR, Taga ME, Semmelhack MF, Bassler BL, Hughson FM (2004). "Salmonella typhimurium recognizes a chemically distinct form of the bacterial quorum-sensing signal AI-2." Mol Cell 15(5);677-87. PMID: 15350213

Reading06: Reading NC, Sperandio V (2006). "Quorum sensing: the many languages of bacteria." FEMS Microbiol Lett 254(1);1-11. PMID: 16451172

Rezzonico08: Rezzonico F, Duffy B (2008). "Lack of genomic evidence of AI-2 receptors suggests a non-quorum sensing role for luxS in most bacteria." BMC Microbiol 8;154. PMID: 18803868

Surette99: Surette MG, Miller MB, Bassler BL (1999). "Quorum sensing in Escherichia coli, Salmonella typhimurium, and Vibrio harveyi: a new family of genes responsible for autoinducer production." Proc Natl Acad Sci U S A 96(4);1639-44. PMID: 9990077

Other References Related to Enzymes, Genes, Subpathways, and Substrates of this Pathway

Allart98: Allart B, Gatel M, Guillerm D, Guillerm G (1998). "The catalytic mechanism of adenosylhomocysteine/methylthioadenosine nucleosidase from Escherichia coli--chemical evidence for a transition state with a substantial oxocarbenium character." Eur J Biochem 256(1);155-62. PMID: 9746359

BRENDA14: BRENDA team (2014). "Imported from BRENDA version existing on Aug 2014." http://www.brenda-enzymes.org.

Capitanio03: Capitanio N, Capitanio G, De Nitto E, Boffoli D, Papa S (2003). "Proton transfer reactions associated with the reaction of the fully reduced, purified cytochrome C oxidase with molecular oxygen and ferricyanide." Biochemistry 42(16);4607-12. PMID: 12705823

Cornell98: Cornell KA, Riscoe MK (1998). "Cloning and expression of Escherichia coli 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase: identification of the pfs gene product." Biochim Biophys Acta 1396(1);8-14. PMID: 9524204

Della85: Della Ragione F, Porcelli M, Carteni-Farina M, Zappia V, Pegg AE (1985). "Escherichia coli S-adenosylhomocysteine/5'-methylthioadenosine nucleosidase. Purification, substrate specificity and mechanism of action." Biochem J 232(2);335-41. PMID: 3911944

Farrar10: Farrar CE, Siu KK, Howell PL, Jarrett JT (2010). "Biotin synthase exhibits burst kinetics and multiple turnovers in the absence of inhibition by products and product-related biomolecules." Biochemistry 49(46);9985-96. PMID: 20961145

Ferro76: Ferro AJ, Barrett A, Shapiro SK (1976). "Kinetic properties and the effect of substrate analogues on 5'-methylthioadenosine nucleosidase from Escherichia coli." Biochim Biophys Acta 438(2);487-94. PMID: 782530

Gopishetty09: Gopishetty B, Zhu J, Rajan R, Sobczak AJ, Wnuk SF, Bell CE, Pei D (2009). "Probing the catalytic mechanism of S-ribosylhomocysteinase (LuxS) with catalytic intermediates and substrate analogues." J Am Chem Soc 131(3);1243-50. PMID: 19099445

Gutierrez09: Gutierrez JA, Crowder T, Rinaldo-Matthis A, Ho MC, Almo SC, Schramm VL (2009). "Transition state analogs of 5'-methylthioadenosine nucleosidase disrupt quorum sensing." Nat Chem Biol 5(4):251-7. PMID: 19270684

Latendresse13: Latendresse M. (2013). "Computing Gibbs Free Energy of Compounds and Reactions in MetaCyc."

Lee03: Lee JE, Cornell KA, Riscoe MK, Howell PL (2003). "Structure of Escherichia coli 5'-methylthioadenosine/ S-adenosylhomocysteine nucleosidase inhibitor complexes provide insight into the conformational changes required for substrate binding and catalysis." J Biol Chem 278(10);8761-70. PMID: 12496243

Lee05d: Lee JE, Luong W, Huang DJ, Cornell KA, Riscoe MK, Howell PL (2005). "Mutational analysis of a nucleosidase involved in quorum-sensing autoinducer-2 biosynthesis." Biochemistry 44(33);11049-57. PMID: 16101288

Lewis01: Lewis HA, Furlong EB, Laubert B, Eroshkina GA, Batiyenko Y, Adams JM, Bergseid MG, Marsh CD, Peat TS, Sanderson WE, Sauder JM, Buchanan SG (2001). "A structural genomics approach to the study of quorum sensing: crystal structures of three LuxS orthologs." Structure 9(6);527-37. PMID: 11435117

Miller68: Miller CH, Duerre JA (1968). "S-ribosylhomocysteine cleavage enzyme from Escherichia coli." J Biol Chem 243(1);92-7. PMID: 4867478

Pei04: Pei D, Zhu J (2004). "Mechanism of action of S-ribosylhomocysteinase (LuxS)." Curr Opin Chem Biol 8(5);492-7. PMID: 15450491

Schauder01: Schauder S, Shokat K, Surette MG, Bassler BL (2001). "The LuxS family of bacterial autoinducers: biosynthesis of a novel quorum-sensing signal molecule." Mol Microbiol 41(2);463-76. PMID: 11489131

Sekowska99: Sekowska A, Danchin A (1999). "Identification of yrrU as the methylthioadenosine nucleosidase gene in Bacillus subtilis." DNA Res 6(5);255-64. PMID: 10574451

Shen06: Shen G, Rajan R, Zhu J, Bell CE, Pei D (2006). "Design and synthesis of substrate and intermediate analogue inhibitors of S-ribosylhomocysteinase." J Med Chem 49(10);3003-11. PMID: 16686542

Winzer02: Winzer K, Hardie KR, Burgess N, Doherty N, Kirke D, Holden MT, Linforth R, Cornell KA, Taylor AJ, Hill PJ, Williams P (2002). "LuxS: its role in central metabolism and the in vitro synthesis of 4-hydroxy-5-methyl-3(2H)-furanone." Microbiology 148(Pt 4);909-22. PMID: 11932438

Zhu03: Zhu J, Dizin E, Hu X, Wavreille AS, Park J, Pei D (2003). "S-Ribosylhomocysteinase (LuxS) is a mononuclear iron protein." Biochemistry 42(16);4717-26. PMID: 12705835

Showing only 20 references. To show more, press the button "Show all references".


Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of MetaCyc: Caspi et al, Nucleic Acids Research 42:D459-D471 2014
Page generated by SRI International Pathway Tools version 19.0 on Tue Jun 30, 2015, biocyc12.