Updated BioCyc iOS App now
available in iTunes store
Updated BioCyc iOS App now
available in iTunes store
Updated BioCyc iOS App now
available in iTunes store
Updated BioCyc iOS App now
available in iTunes store
Updated BioCyc iOS App now
available in iTunes store

MetaCyc Chimeric Pathway: superpathway of jasmonoyl-amino acid conjugates biosynthesis
Inferred from experiment

Enzyme View:

Pathway diagram: superpathway of jasmonoyl-amino acid conjugates biosynthesis

This view shows enzymes only for those organisms listed below, in the list of taxa known to possess the pathway. If an enzyme name is shown in bold, there is experimental evidence for this enzymatic activity.

Synonyms: superpathway of JA-amino acid conjugate biosynthesis, superpathway of jasmonate-amino acid conjugate biosynthesis, superpathway of jasmonic acid-amino acid conjugate biosynthesis, superpathway of jasmonoyl-amino acid biosynthesis, superpathway of jasmonyl-amino acid biosynthesis

Superclasses: Superpathways

Some taxa known to possess parts of the pathway include : Arabidopsis thaliana col, Nicotiana attenuata

Expected Taxonomic Range: Viridiplantae

Note: This is a chimeric pathway, comprising reactions from multiple organisms, and typically will not occur in its entirety in a single organism. The taxa listed here are likely to catalyze only subsets of the reactions depicted in this pathway.

Please note: Not all of the reactions shown in this superpathway may be found in each of the organisms listed here. Rather, this superpathway has been generated to show the diversity of jasmonyl-amino acid conjugates that are synthesized by a number of different plant species.

Jasmonates are an important class of compounds, related to (-)-jasmonate, found throughout the plant kingdom as well as in fungi [Wasternack07]). These compounds may participate in a number of biological processes including resistance to herbivores and some pathogens, protection against ozone, senescence, and reproductive development (reviewed in [Browse08, Wasternack07]).

Many different jasmonate precursors and jasmonate derivatives have biological activity, including jasmonyl (JA)-amino acid conjugates. Different species may have a different array of JA-amino acid conjugates, and the biological activity of each compound may differ between species. For example, jasmonyl-isoleucine (JA-Ile) has been shown to have biological activity in a number of different plants, including Arabidopsis thaliana [Staswick04, Suza08], Nicotiana attenuata[Wang07d, Kang06], Achyranthes bidentata [Tamogami08], barley [Kramell97], tomato [Katsir08], rice [Tamogami97] and others. In Arabidopsis thaliana, JA-Ile promotes the interaction between COI1 (an F-box) protein and the JAZ1 repressor protein. In this manner, JA-Ile is believed to help destabilize the JAZ1 repressor and thereby promote JA-responsive transcription [Thines07]. COI1 and JAZ homologs have been found in other plants, such as tomato, where they also bind in a JA-Ile-dependent manner, [Katsir08], indicating that JA-Ile might have a similar function in other plant species. However, this has not been studied in Nicotiana attenuata to date.

Interestingly, in Polygonum longisetum, a weed commonly found in Japan, a treatment of 100 uM JA-Ile fails to stimulate the normal JA-responsive emissions of volatile sesquiterpenes [Tamogami07] indicating that even JA-Ile may not be similarly effective in all plants. Other differences in biological activity have been observed across species for many other conjugates including JA-ACC, JA-leucine, and JA-valine.

The enzymes capable of synthesizing JA-amino acid conjugates are structurally related to the acyl adenylate-forming firefly luciferase superfamily of enzymes [Staswick02, Staswick04]. To date, JA-amino acid synthetase enzymes have been identified in Arabidopsis thaliana [Staswick04] and Nicotiana attenuata [Wang07d, Kang06], but given the widespread identification of these compounds in numerous species, homologous enzymes must exist throughout the plant kingdom.

Additional studies in Arabidopsis thaliana suggest that the specific isomeric forms of the same jasmonate can have very different biological effects [Fonseca09]. For example, initial studies suggested that (-)-JA-Ile was a biologically active phytohormone [Sembdner93, Guranowski07]. However, later work shows that (+)-7-iso-jasmonoyl-L-isoleucine is the biologically active form of the compound [Fonseca09]. This compound exists at low levels in most commercial preparations of (-)-jasmonoyl-L-isoleucine and may explain the observed biologically activity originally associated with the (-)-JA-Ile diastereomer. A pure preparation of (-)-JA-Ile does does not promote JAZ/COI1 binding in vitro [Fonseca09]. Interestingly, the biologically active form, (+)-7-iso-jasmonoyl-L-isoleucine, more closely resembles the potent bacterial phytotoxin coronatine than (-)-jasmonoyl-L-isoleucine does [Fonseca09, Yi09].

In some species, certain JA-amino acid conjugates have no discernable biological activity, e.g. JA-Val in Arabidopsis thaliana [Staswick04]. It is unclear whether these are storage forms of JA or catabolic intermediates. Another important phytohormone, indole-3-acetic acid (IAA), can be conjugated with several amino acids, as shown in the indole-3-acetyl-amide conjugate biosynthesis pathway. Some of these compounds, such as IAA-aspartate are targeted for further breakdown ( [Ostin98], (see indole-3-acetate degradation IV), while others, such as, IAA-alanine may serve as storage forms. A family of amido hydrolases can release free, active IAA from some of these "storage" IAA conjugates [Sotelo95, Davies99]. But, to date, no JA-amido hydrolases (that could release free JA from the amino acid conjugates) have been identified in plants. However, this enzymatic activity has been detected in the fungus, Botryodiplodia theobromae [Hertel97]. Further work will be required to determine the metabolic and functional fate of the "inactive" JA-amino acid conjugates in different species.

Subpathways: jasmonoyl-amino acid conjugates biosynthesis II, jasmonoyl-amino acid conjugates biosynthesis I

Unification Links: PlantCyc:PWY-6234

Created 24-Apr-2009 by Dreher KA, TAIR


Browse08: Browse J (2008). "Jasmonate Passes Muster: A Receptor and Targets for the Defense Hormone." Annu Rev Plant Biol. PMID: 19025383

Davies99: Davies RT, Goetz DH, Lasswell J, Anderson MN, Bartel B (1999). "IAR3 encodes an auxin conjugate hydrolase from Arabidopsis." Plant Cell 11(3);365-76. PMID: 10072397

Fonseca09: Fonseca S, Chini A, Hamberg M, Adie B, Porzel A, Kramell R, Miersch O, Wasternack C, Solano R (2009). "(+)-7-iso-Jasmonoyl-L-isoleucine is the endogenous bioactive jasmonate." Nat Chem Biol 5(5);344-50. PMID: 19349968

Guranowski07: Guranowski A, Miersch O, Staswick PE, Suza W, Wasternack C (2007). "Substrate specificity and products of side-reactions catalyzed by jasmonate:amino acid synthetase (JAR1)." FEBS Lett 581(5);815-20. PMID: 17291501

Hertel97: Hertel SC, Knofel HD, Kramell R, Miersch O (1997). "Partial purification and characterization of a jasmonic acid conjugate cleaving amidohydrolase from the fungus Botryodiplodia theobromae." FEBS Lett 407(1);105-10. PMID: 9141491

Kang06: Kang JH, Wang L, Giri A, Baldwin IT (2006). "Silencing threonine deaminase and JAR4 in Nicotiana attenuata impairs jasmonic acid-isoleucine-mediated defenses against Manduca sexta." Plant Cell 18(11);3303-20. PMID: 17085687

Katsir08: Katsir L, Schilmiller AL, Staswick PE, He SY, Howe GA (2008). "COI1 is a critical component of a receptor for jasmonate and the bacterial virulence factor coronatine." Proc Natl Acad Sci U S A 105(19);7100-5. PMID: 18458331

Kramell97: Kramell R, Miersch O, Hause B, Ortel B, Parthier B, Wasternack C (1997). "Amino acid conjugates of jasmonic acid induce jasmonate-responsive gene expression in barley (Hordeum vulgare L.) leaves." FEBS Lett 414(2);197-202. PMID: 9315685

Ostin98: Ostin A, Kowalyczk M, Bhalerao RP, Sandberg G (1998). "Metabolism of indole-3-acetic acid in Arabidopsis." Plant Physiol 118(1);285-96. PMID: 9733548

Sembdner93: Sembdner, G., Parthier, B. (1993). "The Biochemistry and the Physiological and Molecular Actions of Jasmonates." Annual Review of Plant Physiology and Plant Molecular Biology. 44: 569-589.

Sotelo95: Sotelo A, Contreras E, Flores S (1995). "Nutritional value and content of antinutritional compounds and toxics in ten wild legumes of Yucatan Peninsula." Plant Foods Hum Nutr 47(2);115-23. PMID: 7792259

Staswick02: Staswick PE, Tiryaki I, Rowe ML (2002). "Jasmonate response locus JAR1 and several related Arabidopsis genes encode enzymes of the firefly luciferase superfamily that show activity on jasmonic, salicylic, and indole-3-acetic acids in an assay for adenylation." Plant Cell 14(6);1405-15. PMID: 12084835

Staswick04: Staswick PE, Tiryaki I (2004). "The oxylipin signal jasmonic acid is activated by an enzyme that conjugates it to isoleucine in Arabidopsis." Plant Cell 16(8);2117-27. PMID: 15258265

Suza08: Suza WP, Staswick PE (2008). "The role of JAR1 in Jasmonoyl-L: -isoleucine production during Arabidopsis wound response." Planta 227(6);1221-32. PMID: 18247047

Tamogami07: Tamogami, S., Narita, Y., Suzuki, S., Nishizawa, T., Hanai, H., Noma, M. (2007). "Volatile sesquiterpenes emitted from leaves of Polygonum longisetum treatedwith jasmonic acid and its amide conjugates." Journal of Pesticide Science. 32 (3): 264269.

Tamogami08: Tamogami S, Rakwal R, Agrawal GK (2008). "Interplant communication: airborne methyl jasmonate is essentially converted into JA and JA-Ile activating jasmonate signaling pathway and VOCs emission." Biochem Biophys Res Commun 376(4);723-7. PMID: 18812165

Tamogami97: Tamogami S, Rakwal R, Kodama O (1997). "Phytoalexin production by amino acid conjugates of jasmonic acid through induction of naringenin-7-O-methyltransferase, a key enzyme on phytoalexin biosynthesis in rice (Oryza sativa L.)." FEBS Lett 401(2-3);239-42. PMID: 9013895

Thines07: Thines B, Katsir L, Melotto M, Niu Y, Mandaokar A, Liu G, Nomura K, He SY, Howe GA, Browse J (2007). "JAZ repressor proteins are targets of the SCF(COI1) complex during jasmonate signalling." Nature 448(7154);661-5. PMID: 17637677

Wang07d: Wang L, Halitschke R, Kang JH, Berg A, Harnisch F, Baldwin IT (2007). "Independently silencing two JAR family members impairs levels of trypsin proteinase inhibitors but not nicotine." Planta 226(1);159-67. PMID: 17273867

Wasternack07: Wasternack C (2007). "Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development." Ann Bot (Lond) 100(4);681-97. PMID: 17513307

Yi09: Yi H, Preuss ML, Jez JM (2009). "The devil (and an active jasmonate hormone) is in the details." Nat Chem Biol 5(5);273-4. PMID: 19377448

Other References Related to Enzymes, Genes, Subpathways, and Substrates of this Pathway

Hsieh00: Hsieh HL, Okamoto H, Wang M, Ang LH, Matsui M, Goodman H, Deng XW (2000). "FIN219, an auxin-regulated gene, defines a link between phytochrome A and the downstream regulator COP1 in light control of Arabidopsis development." Genes Dev 14(15);1958-70. PMID: 10921909

Latendresse13: Latendresse M. (2013). "Computing Gibbs Free Energy of Compounds and Reactions in MetaCyc."

Mueller94: Mueller MJ, Brodschelm W (1994). "Quantification of jasmonic acid by capillary gas chromatography-negative chemical ionization-mass spectrometry." Anal Biochem 218(2);425-35. PMID: 8074303

Szponarski04: Szponarski W, Sommerer N, Boyer JC, Rossignol M, Gibrat R (2004). "Large-scale characterization of integral proteins from Arabidopsis vacuolar membrane by two-dimensional liquid chromatography." Proteomics 4(2);397-406. PMID: 14760709

Wang08b: Wang L, Allmann S, Wu J, Baldwin IT (2008). "Comparisons of LIPOXYGENASE3- and JASMONATE-RESISTANT4/6-silenced plants reveal that jasmonic acid and jasmonic acid-amino acid conjugates play different roles in herbivore resistance of Nicotiana attenuata." Plant Physiol 146(3);904-15. PMID: 18065562

Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of MetaCyc: Caspi et al, Nucleic Acids Research 42:D459-D471 2014
Page generated by Pathway Tools version 19.5 (software by SRI International) on Fri Apr 29, 2016, biocyc13.