Updated BioCyc iOS App now
available in iTunes store
Updated BioCyc iOS App now
available in iTunes store
Updated BioCyc iOS App now
available in iTunes store
Updated BioCyc iOS App now
available in iTunes store
Updated BioCyc iOS App now
available in iTunes store

MetaCyc Pathway: meso-butanediol biosynthesis I
Inferred from experiment

Enzyme View:

Pathway diagram: meso-butanediol biosynthesis I

This view shows enzymes only for those organisms listed below, in the list of taxa known to possess the pathway. If an enzyme name is shown in bold, there is experimental evidence for this enzymatic activity.

Synonyms: (R,S)-butylene glycol fermentation, (R,S)-butanediol fermentation, (R,S)-butanediol biosynthesis

Superclasses: Generation of Precursor Metabolites and EnergyFermentationButanediol Biosynthesis

Some taxa known to possess this pathway include : Geobacillus stearothermophilus, Klebsiella pneumoniae, Serratia marcescens H30 [Zhang13]

Expected Taxonomic Range: Bacteria

Many bacterial species can ferment pyruvate to 2,3-butanediol via several intermediate compounds, including (S)-2-acetolactate, diacetyl and acetoin. Not all species carry the process all the way from pyruvate to 2,3-butanediol - some may stop earlier, accumulating some of the intermediates.

There are two isomeric forms of acetoin - (R)-acetoin and (S)-acetoin, and three isomeric forms of 2,3-butanediol (BD ) - (R,R)-2,3-butanediol, (S,S)-2,3-butanediol and (R,S)-2,3-butanediol. Different organisms produce different forms, or different combinations of the different forms. This pathway describes the production of (R,S)-2,3-butanediol from (R)-acetoin.

The conversion of acetoin to 2,3-butanediol, which is reversible, is performed by the enzyme acetoin reductase (AR), also known as 2,3-butanediol dehydrogenase (BDH). 4 types of AR activities have been identified, differing in the substrate and product stereo-specificity. One of these activities is the production (R,S)-2,3-butanediol from (R)-acetoin [Ui84]. Enzymes that catalyze this activity have been characterized from several organisms including Klebsiella pneumoniae [Ui97] and Geobacillus stearothermophilus [Giovannini96].

The metabolic function of 2,3-butanediol is not yet known, although it may play a role in preventing intracellular acidification by changing the metabolism from acid production to the formation of a neutral compound [Booth83]. In addition, the pathway might participate in regulation of the NADH/NAD+ ratio in the bacteria [Blomqvist93].

Superpathways: superpathway of 2,3-butanediol biosynthesis

Variants: (R,R)-butanediol biosynthesis, (S,S)-butanediol biosynthesis, meso-butanediol biosynthesis II, superpathway of (R,R)-butanediol biosynthesis

Created 23-Nov-2009 by Caspi R, SRI International


Blomqvist93: Blomqvist K, Nikkola M, Lehtovaara P, Suihko ML, Airaksinen U, Straby KB, Knowles JK, Penttila ME (1993). "Characterization of the genes of the 2,3-butanediol operons from Klebsiella terrigena and Enterobacter aerogenes." J Bacteriol 175(5);1392-404. PMID: 8444801

Booth83: Booth IR, Kroll RG (1983). "Regulation of cytoplasmic pH (pH1) in bacteria and its relationship to metabolism." Biochem Soc Trans 11(1);70-2. PMID: 6298028

Giovannini96: Giovannini PP, Medici A, Bergamini CM, Rippa M (1996). "Properties of diacetyl (acetoin) reductase from Bacillus stearothermophilus." Bioorg Med Chem 4(8);1197-201. PMID: 8879540

Magee87: Magee, R.J., Kosaric, N. (1987). "The microbial production of 2,3-butanediol." Adv. Appl. Microbiol. 32: 89-161.

Oppermann94: Oppermann FB, Steinbuchel A (1994). "Identification and molecular characterization of the aco genes encoding the Pelobacter carbinolicus acetoin dehydrogenase enzyme system." J Bacteriol 176(2);469-85. PMID: 8110297

Syu01: Syu MJ (2001). "Biological production of 2,3-butanediol." Appl Microbiol Biotechnol 55(1);10-8. PMID: 11234948

Ui84: Ui, S., Matsuyama, N., Masuda, H., Muraki, H. (1984). "Mechanism for the formation of 2,3-butanediol stereoisomers in Klebsiella pneumoniae." J. Ferment. Technol. 62: 551-559.

Ui97: Ui, S., Okajima, Y., Mimura, A., Kanai, H., Kobayashi, T., Kudo, T. (1997). "Sequence analysis of the gene for and characterization of D-acetoin forming meso-2,3-butanediol dehydrogenase of Klebsiella pneumoniae expressed in Escherichia coli." J. Ferment. Bioeng. 83: 32-37.

Wardwell01: Wardwell SA, Yang YT, Chang HY, San KY, Rudolph FB, Bennett GN (2001). "Expression of the Klebsiella pneumoniae CG21 acetoin reductase gene in Clostridium acetobutylicum ATCC 824." J Ind Microbiol Biotechnol 27(4);220-7. PMID: 11687934

Zhang13: Zhang L, Xu Q, Zhan S, Li Y, Lin H, Sun S, Sha L, Hu K, Guan X, Shen Y (2013). "A new NAD(H)-dependent meso-2,3-butanediol dehydrogenase from an industrially potential strain Serratia marcescens H30." Appl Microbiol Biotechnol. PMID: 23666479

Other References Related to Enzymes, Genes, Subpathways, and Substrates of this Pathway

Latendresse13: Latendresse M. (2013). "Computing Gibbs Free Energy of Compounds and Reactions in MetaCyc."

Otagiri01: Otagiri M, Kurisu G, Ui S, Takusagawa Y, Ohkuma M, Kudo T, Kusunoki M (2001). "Crystal structure of meso-2,3-butanediol dehydrogenase in a complex with NAD+ and inhibitor mercaptoethanol at 1.7 A resolution for understanding of chiral substrate recognition mechanisms." J Biochem 129(2);205-8. PMID: 11173520

Ui04: Ui S, Takusagawa Y, Sato T, Ohtsuki T, Mimura A, Ohkuma M, Kudo T (2004). "Production of L-2,3-butanediol by a new pathway constructed in Escherichia coli." Lett Appl Microbiol 39(6);533-7. PMID: 15548307

Ui99: Ui S, Mimura A, Ohkuma M, Kudo T (1999). "Formation of a chiral acetoinic compound from diacetyl by Escherichia coli expressing meso-2,3-butanediol dehydrogenase." Lett Appl Microbiol 28(6);457-60. PMID: 10389264

Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of MetaCyc: Caspi et al, Nucleic Acids Research 42:D459-D471 2014
Page generated by Pathway Tools version 19.5 (software by SRI International) on Mon May 2, 2016, biocyc14.