MetaCyc Pathway: anthranilate degradation IV (aerobic)

Pathway diagram: anthranilate degradation IV (aerobic)

This view shows enzymes only for those organisms listed below, in the list of taxa known to possess the pathway. If an enzyme name is shown in bold, there is experimental evidence for this enzymatic activity.

Superclasses: Degradation/Utilization/Assimilation Aromatic Compounds Degradation 2-Aminobenzoate Degradation

Some taxa known to possess this pathway include ? : Geobacillus thermodenitrificans NG80-2

Expected Taxonomic Range: Bacteria , Eukaryota

General Background

Four types of aromatic compounds degradation pathways are thought to occur in different types of bacteria:

Aerobic organisms take advantage of the availability of molecular oxygen, and use oxygenases that introduce hydroxyl groups and cleave the aromatic ring. These pathways usually lead to a few central intermediates such as catechol, protocatechuate, and gentisate (see anthranilate degradation I (aerobic)).

Facultative aerobes utilize two types of pathways, depending on the availability of oxygen. When oxygen is present, these organisms use the so-called "hybrid" type of aerobic metabolism for some aromatic compounds, including benzoate, anthranilate and phenylacetate. These pathways use coenzyme A to activate and form thioesters of the substrates, followed by an oxygenase/reductase step to dearomatize (but not cleave) the ring. Cleavage of the dearomatized ring does not require oxygen (see anthranilate degradation II (aerobic)). Under anaerobic conditions, facultative aerobes and phototrophs use a reductive aromatic metabolism. The aromatic compounds are activated by coenzyme A to an active intermediate that can be transformed to important central intermediate such as benzoyl-CoA. Reduction of the aromatic ring of benzoyl-CoA is catalyzed by benzoyl-CoA reductase and is driven by the hydrolysis of 2 ATP molecules (see anthranilate degradation III (anaerobic)).

Strict anaerobes utilize a completely different and not well characterized benzoyl-coenzyme A reductase that does not utilize ATP [Fuchs08].

About This Pathway

Geobacillus thermodenitrificans NG80-2 degrades L-tryptophan to acetyl-CoA via the intermediates anthranilate and 3-hydroxyanthranilate. While L-tryptophan degradation via 3-hydroxyanthranilate is well documented in eukaryotes (although via a different pathway, as documented in pathway L-tryptophan degradation III (eukaryotic)), this is an unusual route for bacteria [Liu10b].

The key enzyme of the pathway, which converts anthranilate to 3-hydroxyanthranilate, is anthranilate hydroxylase. The gene encoding the protein has been cloned, expressed in Escherichia coli and purified, and was shown to be an FAD-dependent hydroxylase. The GTNG_3160 gene that encodes the enzyme is found in a cluster that also contains two additional genes that encode a riboflavin kinase/FMN adenylyltransferase and an FAD reductase, which together provide FAD for the hydroxylase [Liu10b].

Superpathways: L-tryptophan degradation XII (Geobacillus) , L-tryptophan degradation XI (mammalian, via kynurenine)

Variants: anthranilate degradation I (aerobic) , anthranilate degradation II (aerobic) , anthranilate degradation III (anaerobic)

Created 29-Apr-2010 by Caspi R , SRI International


Fuchs08: Fuchs G (2008). "Anaerobic metabolism of aromatic compounds." Ann N Y Acad Sci 1125;82-99. PMID: 18378589

Liu10b: Liu X, Dong Y, Li X, Ren Y, Li Y, Wang W, Wang L, Feng L (2010). "Characterization of the anthranilate degradation pathway in Geobacillus thermodenitrificans NG80-2." Microbiology 156(Pt 2);589-95. PMID: 19942660

Other References Related to Enzymes, Genes, Subpathways, and Substrates of this Pathway

Latendresse13: Latendresse M. (2013). "Computing Gibbs Free Energy of Compounds and Reactions in MetaCyc."

Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of MetaCyc: Caspi et al, Nucleic Acids Research 42:D459-D471 2014
Page generated by SRI International Pathway Tools version 19.0 on Wed Apr 1, 2015, biocyc13.