Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
twitter

MetaCyc Pathway: phosphatidylcholine acyl editing

Note: a dashed line (without arrowheads) between two compound names is meant to imply that the two names are just different instantiations of the same compound -- i.e. one may be a specific name and the other a general name, or they may both represent the same compound in different stages of a polymerization-type pathway. This view shows enzymes only for those organisms listed below, in the list of taxa known to possess the pathway. If an enzyme name is shown in bold, there is experimental evidence for this enzymatic activity.

Superclasses: Biosynthesis Fatty Acids and Lipids Biosynthesis

Some taxa known to possess this pathway include ? : Carthamus tinctorius

Expected Taxonomic Range: Spermatophyta

Summary:
Triacyglycerols (TAG) from vegetable oils are a major source of essential fatty acids in human diet, namely polyunsaturated fatty acids (PUFA) linoleate (18:2) and linolenate (18:3). In oilseeds, TAG is synthesized via the Kennedy pathway, where the precursor diacylglycerol (DAG) is de novo synthesized from glycerol-3-phosphate. In addition to the Kennedy pathway, there are several other paths supplying DAG for TAG biosynthesis during seed development in plants [Bates09]. They involve a reverse activity of CDP-choline:1,2-diacylglycerol cholinephosphotransferas, and/or a novel enzyme phosphatidylcholine:diacylglycerol cholinephosphotransferase. Since further desaturation of 18:1 to form 18:2 and 18:3 occurs mainly in phosphatidylcholine (PC), these alternative paths can provide PC-derived DAG species which are enriched in PUFA for TAG synthesis. Further more, an acyl editing (acyl exchange) mechanism also exists that can further enrich PUFA in oilseed TAG [Bates09].

Acyl exchange between acyl-CoA and PC has been detected in a number of plant species including microsomal preparations of developing safflower cotyledons [Stymne84] and developing soybean embryos [Bates09]. Further experiments are required to reveal whether a reverse activity of acyl-CoA:lysophosphatidylcholine acyltransferase (LPCAT, 2.3.1.23) or a phospholipase A (3.1.1.4, 3.1.1.32), or both are involved in acyl-CoA and lysophosphatidylcholine generation [Bates09]. In either case, PC-derived acyl-CoAs, which are rich in PUFA, can feed into the Kennedy pathway for TAG synthesis. Lysophosphatidylcholines can be converted back to PC to replenish the PC pool by the forward reaction of 2.3.1.23. In addition, in the forward reaction de novo synthesized acyl-CoAs can be incorporated into PC.

Credits:
Created 06-May-2011 by Zhang P , PMN


References

Bates09: Bates PD, Durrett TP, Ohlrogge JB, Pollard M (2009). "Analysis of acyl fluxes through multiple pathways of triacylglycerol synthesis in developing soybean embryos." Plant Physiol 150(1);55-72. PMID: 19329563

Stymne84: Stymne S, Stobart AK (1984). "Evidence for the reversibility of the acyl-CoA:lysophosphatidylcholine acyltransferase in microsomal preparations from developing safflower (Carthamus tinctorius L.) cotyledons and rat liver." Biochem J 223(2);305-14. PMID: 6497849

Other References Related to Enzymes, Genes, Subpathways, and Substrates of this Pathway

Bahn03: Bahn SC, Lee HY, Kim HJ, Ryu SB, Shin JS (2003). "Characterization of Arabidopsis secretory phospholipase A2-gamma cDNA and its enzymatic properties." FEBS Lett 553(1-2);113-8. PMID: 14550557

Dennis91: Dennis MW, Kolattukudy PE (1991). "Alkane biosynthesis by decarbonylation of aldehyde catalyzed by a microsomal preparation from Botryococcus braunii." Arch Biochem Biophys 287(2);268-75. PMID: 1898004

Fulda02: Fulda M, Shockey J, Werber M, Wolter FP, Heinz E (2002). "Two long-chain acyl-CoA synthetases from Arabidopsis thaliana involved in peroxisomal fatty acid beta-oxidation." Plant J 32(1);93-103. PMID: 12366803

Holk02: Holk A, Rietz S, Zahn M, Quader H, Scherer GF (2002). "Molecular identification of cytosolic, patatin-related phospholipases A from Arabidopsis with potential functions in plant signal transduction." Plant Physiol 130(1);90-101. PMID: 12226489

Iijima96: Iijima H, Fujino T, Minekura H, Suzuki H, Kang MJ, Yamamoto T (1996). "Biochemical studies of two rat acyl-CoA synthetases, ACS1 and ACS2." Eur J Biochem 242(2);186-90. PMID: 8973631

Ioki12: Ioki M, Baba M, Bidadi H, Suzuki I, Shiraiwa Y, Watanabe MM, Nakajima N (2012). "Modes of hydrocarbon oil biosynthesis revealed by comparative gene expression analysis for race A and race B strains of Botryococcus braunii." Bioresour Technol 109;271-6. PMID: 22257857

Ishiguro01: Ishiguro S, Kawai-Oda A, Ueda J, Nishida I, Okada K (2001). "The DEFECTIVE IN ANTHER DEHISCIENCE gene encodes a novel phospholipase A1 catalyzing the initial step of jasmonic acid biosynthesis, which synchronizes pollen maturation, anther dehiscence, and flower opening in Arabidopsis." Plant Cell 2001;13(10);2191-209. PMID: 11595796

Kim11a: Kim EY, Seo YS, Kim WT (2011). "AtDSEL, an Arabidopsis cytosolic DAD1-like acylhydrolase, is involved in negative regulation of storage oil mobilization during seedling establishment." J Plant Physiol. PMID: 21477884

Latendresse13: Latendresse M. (2013). "Computing Gibbs Free Energy of Compounds and Reactions in MetaCyc."

Lewin01: Lewin TM, Kim JH, Granger DA, Vance JE, Coleman RA (2001). "Acyl-CoA synthetase isoforms 1, 4, and 5 are present in different subcellular membranes in rat liver and can be inhibited independently." J Biol Chem 276(27);24674-9. PMID: 11319232

Lubert: Lubert Stryer "Biochemistry." ISBN 0-7167-1226-1.

Malhotra99: Malhotra KT, Malhotra K, Lubin BH, Kuypers FA (1999). "Identification and molecular characterization of acyl-CoA synthetase in human erythrocytes and erythroid precursors." Biochem J 344 Pt 1;135-43. PMID: 10548543

Moser14a: Moser R, Aktas M, Narberhaus F (2014). "Phosphatidylcholine biosynthesis in Xanthomonas campestris via a yeast-like acylation pathway." Mol Microbiol 91(4);736-50. PMID: 24329598

Noiriel04: Noiriel A, Benveniste P, Banas A, Stymne S, Bouvier-Nave P (2004). "Expression in yeast of a novel phospholipase A1 cDNA from Arabidopsis thaliana." Eur J Biochem 271(18);3752-64. PMID: 15355352

Rubio06: Rubio S, Larson TR, Gonzalez-Guzman M, Alejandro S, Graham IA, Serrano R, Rodriguez PL (2006). "An Arabidopsis mutant impaired in coenzyme A biosynthesis is sugar dependent for seedling establishment." Plant Physiol 140(3);830-43. PMID: 16415216

Ryu05: Ryu SB, Lee HY, Doelling JH, Palta JP (2005). "Characterization of a cDNA encoding Arabidopsis secretory phospholipase A2-alpha, an enzyme that generates bioactive lysophospholipids and free fatty acids." Biochim Biophys Acta 1736(2);144-51. PMID: 16140037

Schnurr02: Schnurr JA, Shockey JM, de Boer GJ, Browse JA (2002). "Fatty acid export from the chloroplast. Molecular characterization of a major plastidial acyl-coenzyme A synthetase from Arabidopsis." Plant Physiol 129(4);1700-9. PMID: 12177483

Schnurr04: Schnurr J, Shockey J, Browse J (2004). "The acyl-CoA synthetase encoded by LACS2 is essential for normal cuticle development in Arabidopsis." Plant Cell 16(3);629-42. PMID: 14973169

Shockey02: Shockey JM, Fulda MS, Browse JA (2002). "Arabidopsis contains nine long-chain acyl-coenzyme a synthetase genes that participate in fatty acid and glycerolipid metabolism." Plant Physiol 129(4);1710-22. PMID: 12177484

Tanaka79: Tanaka T, Hosaka K, Hoshimaru M, Numa S (1979). "Purification and properties of long-chain acyl-coenzyme-A synthetase from rat liver." Eur J Biochem 98(1);165-72. PMID: 467438

Showing only 20 references. To show more, press the button "Show all references".


Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of MetaCyc: Caspi et al, Nucleic Acids Research 42:D459-D471 2014
Page generated by SRI International Pathway Tools version 18.5 on Sun Nov 23, 2014, BIOCYC13A.