Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
BioCyc websites down
12/28 - 12/31
for maintenance.
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
BioCyc websites down
12/28 - 12/31
for maintenance.
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
BioCyc websites down
12/28 - 12/31
for maintenance.
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
BioCyc websites down
12/28 - 12/31
for maintenance.
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
BioCyc websites down
12/28 - 12/31
for maintenance.
twitter

MetaCyc Pathway: CDP-diacylglycerol biosynthesis II

Enzyme View:

This view shows enzymes only for those organisms listed below, in the list of taxa known to possess the pathway. If an enzyme name is shown in bold, there is experimental evidence for this enzymatic activity.

Superclasses: Biosynthesis Fatty Acids and Lipids Biosynthesis Phospholipid Biosynthesis CDP-diacylglycerol Biosynthesis

Some taxa known to possess this pathway include ? : Arabidopsis thaliana col , Escherichia coli K-12 substr. MG1655

Expected Taxonomic Range: Proteobacteria , Viridiplantae

Summary:
General Background

Phospholipids are important membrane components. Most of the phospholipids belong to the category of phosphoglycerides. The simplest phosphoglycerides, which are known as phosphatidates, are composed of a glycerol molecule attached to two fatty acids and one phosphate group. The carboxyl group of each fatty acid is esterified to the hydroxyl groups on carbon-1 and carbon-2 of the glycerol molecule, while the phosphate group is attached to carbon-3 by an ester link. Phosphatidates are precursors for many phosphoglycerides found in animals, plants and yeast, including a phosphatidylinositol, an L-1-phosphatidylserine, an L-1-phosphatidyl-ethanolamine, and a cardiolipin.

As part of the synthesis of phosphoglycerides, either the phosphatidate or the modifying compound need to be activated by CTP. In some cases, the modifying compound is activated, as in the case of choline and ethanolamine, which form CDP-choline and CDP-ethanolamine, respectively. However, in the case of other compounds, such as L-serine and myo-inositol, the phosphatidate is activated first, forming a CDP-diacylglycerol, which then reacts with the modifying compound to form the phosphoglyceride.

About This Pathway

This pathway describes the biosynthesis of a CDP-diacylglycerol in some Gram-negative bacteria (primarily the Gammaproteobacteria) as well as the chloroplasts of green plants. In this pathway the production of the intermediate a 1-acyl-sn-glycerol 3-phosphate is catalyzed by a type of the membrane-bound enzyme glycerol-3-phosphate acyltransferase that uses an acyl-[acyl-carrier protein] as the acyl donor.

Bacteria enzymes that can utilze an acyl-[acyl-carrier protein] are found only in some Gram-negative bacteria. They are encoded by the plsB gene, and can also utilize a long-chain acyl-CoA thioesters. The plasitidic enzyme can use only an acyl-[acyl-carrier protein] [Murata97].

The addition of the second acyl moiety is catalyzed by 1-acylglycerol-3-phosphate O-acyltransferase. The bacterial enzyme, which is universally expressed in all bacteria, is encoded by plsC. As in the case of PlsB, it can utilize either a fatty acyl-[acp] or an acyl-CoA thioester as the acyl donor.

A pathway that describes the usage of acyl-CoA donors can be found at CDP-diacylglycerol biosynthesis I. It should be noted that most bacteria utilize a different route for the synthesis of a 1-acyl-sn-glycerol 3-phosphate, as described in CDP-diacylglycerol biosynthesis III.

More information can be found in phospholipid biosynthesis II.

Citations: [Xu06d]

Superpathways: phospholipid biosynthesis II , phospholipid biosynthesis I , phosphatidylglycerol biosynthesis I (plastidic)

Variants: CDP-diacylglycerol biosynthesis I , CDP-diacylglycerol biosynthesis III

Unification Links: EcoCyc:PWY0-1319

Credits:
Created 07-Dec-2007 by Keseler I , SRI International
Revised 29-Jul-2008 by Caspi R , SRI International


References

Murata97: Murata N, Tasaka Y (1997). "Glycerol-3-phosphate acyltransferase in plants." Biochim Biophys Acta 1997;1348(1-2);10-6. PMID: 9370311

Xu06d: Xu C, Yu B, Cornish AJ, Froehlich JE, Benning C (2006). "Phosphatidylglycerol biosynthesis in chloroplasts of Arabidopsis mutants deficient in acyl-ACP glycerol-3- phosphate acyltransferase." Plant J 47(2);296-309. PMID: 16774646

Other References Related to Enzymes, Genes, Subpathways, and Substrates of this Pathway

Baba06: Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H (2006). "Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection." Mol Syst Biol 2;2006.0008. PMID: 16738554

Bayan89: Bayan N, Therisod H (1989). "Evidence for interactions of acyl carrier protein with glycerol-3-phosphate acyltransferase, an inner membrane protein of Escherichia coli." FEBS Lett 1989;255(2);330-4. PMID: 2676605

Bell74: Bell RM (1974). "Mutants of Escherichia coli defective in membrane phospholipid synthesis: macromolecular synthesis in an sn-glycerol 3-phosphate acyltransferase Km mutant." J Bacteriol 117(3);1065-76. PMID: 4591941

Bell75: Bell RM, Cronan JE (1975). "Mutants of Escherichia coli defective in membrane phospholipid synthesis. Phenotypic suppression of sn-glycerol-3-phosphate acyltransferase Km mutants by loss of feedback inhibition of the biosynthetic sn-glycerol-3-phosphate dehydrogenase." J Biol Chem 250(18);7153-8. PMID: 240817

BRENDA14: BRENDA team (2014). "Imported from BRENDA version existing on Aug 2014." http://www.brenda-enzymes.org.

Butland05: Butland G, Peregrin-Alvarez JM, Li J, Yang W, Yang X, Canadien V, Starostine A, Richards D, Beattie B, Krogan N, Davey M, Parkinson J, Greenblatt J, Emili A (2005). "Interaction network containing conserved and essential protein complexes in Escherichia coli." Nature 433(7025);531-7. PMID: 15690043

Byers07: Byers DM, Gong H (2007). "Acyl carrier protein: structure-function relationships in a conserved multifunctional protein family." Biochem Cell Biol 85(6);649-62. PMID: 18059524

Carter68: Carter JR (1968). "Cytidine triphosphate: phosphatidic acid cytidyltransferase in Escherichia coli." J Lipid Res 9(6);748-54. PMID: 4879388

Chang67: Chang YY, Kennedy EP (1967). "Pathways for the synthesis of glycerophosphatides in Escherichia coli." J Biol Chem 242(3);516-9. PMID: 5336962

Chen08a: Chen YQ, Kuo MS, Li S, Bui HH, Peake DA, Sanders PE, Thibodeaux SJ, Chu S, Qian YW, Zhao Y, Bredt DS, Moller DE, Konrad RJ, Beigneux AP, Young SG, Cao G (2008). "AGPAT6 is a novel microsomal glycerol-3-phosphate acyltransferase." J Biol Chem 283(15);10048-57. PMID: 18238778

Clark80: Clark D, Lightner V, Edgar R, Modrich P, Cronan JE, Bell RM (1980). "Regulation of phospholipid biosynthesis in Escherichia coli. Cloning of the structural gene for the biosynthetic sn-glycerol-3-phosphate dehydrogenase." J Biol Chem 255(2);714-7. PMID: 6985897

Coleman90: Coleman J (1990). "Characterization of Escherichia coli cells deficient in 1-acyl-sn-glycerol-3- phosphate acyltransferase activity." J Biol Chem 1990;265(28);17215-21. PMID: 2211622

Coleman92: Coleman J (1992). "Characterization of the Escherichia coli gene for 1-acyl-sn-glycerol-3-phosphate acyltransferase (plsC)." Mol Gen Genet 1992;232(2);295-303. PMID: 1557036

COMMUNICATION: Communication, http://arabidopsis.org/servlets/TairObject?accession=Communication:501714663.

COMMUNICATIONa: communication, http://arabidopsis.org/servlets/TairObject?accession=Communication:1675001.

Cooper87: Cooper CL, Jackowski S, Rock CO (1987). "Fatty acid metabolism in sn-glycerol-3-phosphate acyltransferase (plsB) mutants." J Bacteriol 169(2);605-11. PMID: 3542964

Cronan74: Cronan JE, Bell RM (1974). "Mutants of Escherichia coli defective in membrane phospholipid synthesis: mapping of the structural gene for L-glycerol 3-phosphate dehydrogenase." J Bacteriol 118(2);598-605. PMID: 4597451

Daley05: Daley DO, Rapp M, Granseth E, Melen K, Drew D, von Heijne G (2005). "Global topology analysis of the Escherichia coli inner membrane proteome." Science 308(5726);1321-3. PMID: 15919996

DiazMejia09: Diaz-Mejia JJ, Babu M, Emili A (2009). "Computational and experimental approaches to chart the Escherichia coli cell-envelope-associated proteome and interactome." FEMS Microbiol Rev 33(1);66-97. PMID: 19054114

Douce72: Douce, Roland, Mannella, Carmen, Bonner, Walter D (1972). "Site of the biosynthesis of CDP-diglyceride in plant mitochondria." Biochem. Biophys. Res. Communications.

Showing only 20 references. To show more, press the button "Show all references".


Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of MetaCyc: Caspi et al, Nucleic Acids Research 42:D459-D471 2014
Page generated by SRI International Pathway Tools version 18.5 on Mon Dec 22, 2014, biocyc13.