Metabolic Modeling Tutorial
registration ends
Sat Mar 7th, 2015
Metabolic Modeling Tutorial
registration ends
Sat Mar 7th, 2015
Metabolic Modeling Tutorial
registration ends
Sat Mar 7th, 2015
Metabolic Modeling Tutorial
registration ends
Sat Mar 7th, 2015
Metabolic Modeling Tutorial
registration ends
Sat Mar 7th, 2015

MetaCyc Polypeptide: succinate:quinone oxidoreductase, iron-sulfur cluster binding protein

Gene: sdhB Accession Numbers: EG10932 (MetaCyc), b0724, ECK0713

Synonyms: dhsB

Species: Escherichia coli K-12 substr. MG1655

Component of: succinate:quinone oxidoreductase (extended summary available)

This is one of two catalytic subunits of the four subunit succinate dehydrogenase (SQR) enzyme. This subunit contains three iron-sulfur clusters: a 2Fe-2S, a 4Fe-4S and a 3Fe-4S.

This subunit has 38% identity to the fumarate reductase iron-sulfur cluster subunit, FrdB [Darlison84a]. The iron-sulfur clusters of this subunit act as electron transfer redox centers, delivering electrons from the FAD cofactor in SdhA to the ubiquinone binding site within the membrane domain [Cecchini03].

sdhB is one of a network of genes believed to play a role in promoting the stress-induced mutagenesis (SIM) response of E. coli K-12 [Al12].
ArcA appears to repress sdhB gene expression under anaerobiosis. Two putative ArcA binding sites were identified 69, 267 and 330 bp upstream of this gene [Salmon05], but no promoter upstream of it has been identified. Instead, sdhB is transcribed from two promoters: one of them is located usptream of sdhD gene and the other one upstream of sdhC gene. The sdhCp promoter is repressed by ArcA.

Citations: [Condon85]

Locations: cytosol, inner membrane

Map Position: [756,912 -> 757,628]

Molecular Weight of Polypeptide: 26.77 kD (from nucleotide sequence)

Unification Links: ASAP:ABE-0002468 , CGSC:17905 , DIP:DIP-10836N , EchoBASE:EB0925 , EcoGene:EG10932 , EcoliWiki:b0724 , ModBase:P07014 , OU-Microarray:b0724 , PortEco:sdhB , PR:PRO_000023919 , Pride:P07014 , Protein Model Portal:P07014 , RefSeq:NP_415252 , RegulonDB:EG10932 , SMR:P07014 , String:511145.b0724 , UniProt:P07014

Relationship Links: InterPro:IN-FAMILY:IPR001041 , InterPro:IN-FAMILY:IPR004489 , InterPro:IN-FAMILY:IPR009051 , InterPro:IN-FAMILY:IPR012285 , InterPro:IN-FAMILY:IPR012675 , InterPro:IN-FAMILY:IPR017896 , InterPro:IN-FAMILY:IPR017900 , InterPro:IN-FAMILY:IPR025192 , PDB:Structure:1NEK , PDB:Structure:1NEN , PDB:Structure:2ACZ , PDB:Structure:2AD0 , PDB:Structure:2WDQ , PDB:Structure:2WDR , PDB:Structure:2WDV , PDB:Structure:2WP9 , PDB:Structure:2WS3 , PDB:Structure:2WU2 , PDB:Structure:2WU5 , Pfam:IN-FAMILY:PF13085 , Prosite:IN-FAMILY:PS00197 , Prosite:IN-FAMILY:PS00198 , Prosite:IN-FAMILY:PS51085 , Prosite:IN-FAMILY:PS51379

Reactions known to consume the compound:

Not in pathways:
a reduced flavoprotein (FMNH2) + an iron-sulfur protein → an oxidized flavoprotein (FMN) + a reduced iron-sulfur protein + 2 H+

In Reactions of unknown directionality:

Not in pathways:
an iron-sulfur protein + 2 e- = a reduced iron-sulfur protein

Gene-Reaction Schematic: ?

GO Terms:

Biological Process: GO:0009060 - aerobic respiration Inferred from experiment [Park95a]
GO:0006099 - tricarboxylic acid cycle Inferred by computational analysis [UniProtGOA12, UniProtGOA11, GOA01]
GO:0055114 - oxidation-reduction process Inferred by computational analysis [UniProtGOA11]
Molecular Function: GO:0005515 - protein binding Inferred from experiment [Rajagopala14, Ruprecht09, Stenberg05, Yankovskaya03]
GO:0009055 - electron carrier activity Inferred from experiment Inferred by computational analysis [GOA01, Cheng06]
GO:0051536 - iron-sulfur cluster binding Inferred from experiment Inferred by computational analysis [UniProtGOA11, GOA01, Morningstar85]
GO:0051537 - 2 iron, 2 sulfur cluster binding Inferred from experiment Inferred by computational analysis [UniProtGOA11, Werth92]
GO:0051538 - 3 iron, 4 sulfur cluster binding Inferred from experiment Inferred by computational analysis [UniProtGOA11, Johnson85]
GO:0051539 - 4 iron, 4 sulfur cluster binding Inferred from experiment Inferred by computational analysis [UniProtGOA11, Cammack86]
GO:0008177 - succinate dehydrogenase (ubiquinone) activity Inferred by computational analysis [GOA01a]
GO:0016491 - oxidoreductase activity Inferred by computational analysis [UniProtGOA11, GOA01]
GO:0046872 - metal ion binding Inferred by computational analysis [UniProtGOA11]
Cellular Component: GO:0005829 - cytosol
GO:0005886 - plasma membrane Inferred by computational analysis [UniProtGOA11a, UniProtGOA11]
GO:0016020 - membrane Inferred by computational analysis [UniProtGOA11]

MultiFun Terms: cell structure membrane
metabolism energy metabolism, carbon aerobic respiration
metabolism energy metabolism, carbon TCA cycle
metabolism energy production/transport electron donors

Reviewed in EcoCyc 15-Apr-2008 by Nolan L , Macquarie University
Imported from EcoCyc 16-Sep-2014 by Paley S , SRI International

Subunit of: succinate:quinone oxidoreductase

Synonyms: SQR, complex II, succinate-ubiquinone oxidoreductase, SdhCDAB

Species: Escherichia coli K-12 substr. MG1655

Subunit composition of succinate:quinone oxidoreductase = [SdhA][SdhB][SdhC][SdhD]
         succinate:quinone oxidoreductase, FAD binding protein = SdhA (summary available)
         succinate:quinone oxidoreductase, iron-sulfur cluster binding protein = SdhB (summary available)
         succinate:quinone oxidoreductase, membrane protein SdhC = SdhC (summary available)
         succinate:quinone oxidoreductase, membrane protein SdhC = SdhD (extended summary available)

Succinate dehydrogenase or succinate:quinone oxidoreductase (SQR) catalyses the oxidation of succinate to fumarate concomitant with the reduction of ubiquinone to ubiquinol. SQR plays an important role in cellular metabolism and directly connects the the TCA cycle with the respiratory electron transport chain. As part of the TCA cycle succinate is oxidized to fumarate by SQR and electrons are transferred to the membrane quinone pool for entry into the electron transport chain.

E.coli SQR (SdhCDAB) is a membrane bound heterotetramer [Kita89]. Subunits SdhA and SdhB are hydrophilic and attached to the cytoplasmic surface of the plasma membrane via interactions with the two hydrophobic integral membrane subunits, SdhC and SdhD. SdhA contains the FAD cofactor [Brandsch89] and the dicarboxylic acid binding site [Yankovskaya03]. Electrons from the oxidation of succinate are transferred through the iron-sulphur protein, SdhB, to a quinone binding site located at the interface of the SdhB, SdhC and SdhD subunits [Tran06]. The SdhC and SdhD subunits each contain three transmembrane helices and anchor the complex to the membrane. A single heme b556 cofactor bridges the SdhC and SdhD subunits [Nakamura96]. Crystal structures and electrophoretic and spectrometric analyses indicate that E. coli SQH is organised into a trimeric supercomplex [Yankovskaya03, Sousa11].

SQR is structurally and functionally homologous to fumarate reductase or menaquinol:fumarate reductase (QFR) which catalyses the reduction of fumarate to succinate under anaerobic conditions. The functions of SQR and QFR are partially interchangeable - a plasmid containing the frd genes is able to compensate for the growth deficiency of an sdh mutant [Guest81] while anaerobic expression of succinate dehyrdogenase supports the growth of an frd mutant [Maklashina98]. The SQR redox centres are arranged in a manner that aids the prevention of reactive oxygen species, providing a likely reason for the expression of SQR during aerobic respiration rather than QFR (which promotes high levels of oxygen radicals) [Yankovskaya03].

The sdhCDAB operon is expressed from a single promoter located upstream of sdhC [Park95a, Park97]. sdhCDAB is optimally expressed during aerobic cell growth. Expression of the operon decreases substantially when cells are shifted to anaerobic growth [Shen97]. Negative control occurs by a repression mechanism due to binding of ArcA at the sdhC promoter [Iuchi89, Iuchi94]. The sdh operon is also catabolite controlled, gene expression varies when cells are grown aerobically with different compounds [Park95a].

Crystal structures of E. coli SQR with an empty quinone binding site and with the quinone binding site occupied by various inhibitors have been determined [Yankovskaya03, Ruprecht09, Horsefield06].

Reviews: [Cecchini02, Gunsalus, Hagerhall96].
Comment: [Hederstedt03]

Citations: [Ohnishi87, Condon85, Creaghan78, Spencer74, ZhdanPushkina86, Wood84, Darlison84a, Pershad99, Hederstedt81, Wilde86, Nihei01, Vibat98, Maklashina01, Yang98a, Yang97a, Tornroth02, Barker00, Maklashina99, Tomasiak08, Shimizu08]

Locations: inner membrane

Relationship Links: PDB:Structure:1NEN , PDB:Structure:2ACZ , PDB:Structure:2WDQ , PDB:Structure:2WDR , PDB:Structure:2WDV

GO Terms:

Biological Process: GO:0009060 - aerobic respiration Inferred from experiment [Hirsch63, Park95a]
GO:0006099 - tricarboxylic acid cycle Inferred by computational analysis [GOA00, GOA01]
Molecular Function: GO:0000104 - succinate dehydrogenase activity Inferred by computational analysis Inferred from experiment [Hirsch63, GOA01a, Kita89]
GO:0009055 - electron carrier activity Inferred by computational analysis Inferred from experiment [Cheng06, GOA01]
Cellular Component: GO:0031224 - intrinsic component of membrane Inferred from experiment Inferred by computational analysis [GOA00, Kita89]
GO:0045257 - succinate dehydrogenase complex (ubiquinone) Inferred from experiment Inferred by computational analysis [GOA01a, Kita89]
GO:0005886 - plasma membrane [Kita89]

Revised in EcoCyc 15-Apr-2008 by Nolan L , Macquarie University
Imported from EcoCyc 16-Sep-2014 by Paley S , SRI International

Enzymatic reaction of: succinate:quinone oxidoreductase

Synonyms: SQR, succinate-ubiquinone oxidoreductase, succinate-Q reductase, succinate dehydrogenase

In Pathways: superpathway of glycolysis, pyruvate dehydrogenase, TCA, and glyoxylate bypass , superpathway of glyoxylate bypass and TCA , TCA cycle I (prokaryotic) , succinate to cytochrome bo oxidase electron transfer , succinate to cytochrome bd oxidase electron transfer

Imported from EcoCyc 16-Sep-2014 by Paley S , SRI International

Citations: [Hederstedt81, Ohnishi87]

Cofactors or Prosthetic Groups: ferroheme b [Kita78], a [4Fe-4S] iron-sulfur cluster , [2Fe-2S] iron-sulfur cluster , FAD [Brandsch89, Kita89], [3Fe-4S] iron-sulfur cluster

Inhibitors (Competitive): a 2-alkyl-dinitrophenol derivative , menaquinone-1 , malonate [Maklashina99] , pentachlorophenol [Maklashina99]

Inhibitors (Other): carboxin [Maklashina99]

Primary Physiological Regulators of Enzyme Activity: malonate

Sequence Features

Feature Class Location Citations Comment
Conserved-Region 8 -> 97
UniProt: 2Fe-2S ferredoxin-type;
Metal-Binding-Site 55
UniProt: Iron-sulfur 1 (2Fe-2S);
Metal-Binding-Site 60
UniProt: Iron-sulfur 1 (2Fe-2S);
Metal-Binding-Site 75
UniProt: Iron-sulfur 1 (2Fe-2S);
Conserved-Region 139 -> 169
UniProt: 4Fe-4S ferredoxin-type;
Metal-Binding-Site 149
UniProt: Iron-sulfur 2 (4Fe-4S);
Metal-Binding-Site 152
UniProt: Iron-sulfur 2 (4Fe-4S);
Metal-Binding-Site 155
UniProt: Iron-sulfur 2 (4Fe-4S);
Metal-Binding-Site 159
UniProt: Iron-sulfur 3 (3Fe-4S);
Amino-Acid-Sites-That-Bind 164
UniProt: Ubiquinone; shared with sdhD subunit;
Metal-Binding-Site 206
UniProt: Iron-sulfur 3 (3Fe-4S);
Metal-Binding-Site 212
UniProt: Iron-sulfur 3 (3Fe-4S);
Metal-Binding-Site 216
UniProt: Iron-sulfur 2 (4Fe-4S);

10/20/97 Gene b0724 from Blattner lab Genbank (v. M52) entry merged into EcoCyc gene EG10932; confirmed by SwissProt match.


Al12: Al Mamun AA, Lombardo MJ, Shee C, Lisewski AM, Gonzalez C, Lin D, Nehring RB, Saint-Ruf C, Gibson JL, Frisch RL, Lichtarge O, Hastings PJ, Rosenberg SM (2012). "Identity and function of a large gene network underlying mutagenic repair of DNA breaks." Science 338(6112);1344-8. PMID: 23224554

Barker00: Barker HC, Kinsella N, Jaspe A, Friedrich T, O'Connor CD (2000). "Formate protects stationary-phase Escherichia coli and Salmonella cells from killing by a cationic antimicrobial peptide." Mol Microbiol 35(6);1518-29. PMID: 10760151

Brandsch89: Brandsch R, Bichler V (1989). "Covalent cofactor binding to flavoenzymes requires specific effectors." Eur J Biochem 1989;182(1);125-8. PMID: 2659351

Cammack86: Cammack R, Patil DS, Weiner JH (1986). "Evidence that centre 2 in Escherichia coli fumarate reductase is a [4Fe-4S]cluster." Biochim Biophys Acta 870(3);545-51. PMID: 3008846

Cecchini02: Cecchini G, Schroder I, Gunsalus RP, Maklashina E (2002). "Succinate dehydrogenase and fumarate reductase from Escherichia coli." Biochim Biophys Acta 1553(1-2);140-57. PMID: 11803023

Cecchini03: Cecchini G, Maklashina E, Yankovskaya V, Iverson TM, Iwata S (2003). "Variation in proton donor/acceptor pathways in succinate:quinone oxidoreductases." FEBS Lett 545(1);31-8. PMID: 12788489

Cheng06: Cheng VW, Ma E, Zhao Z, Rothery RA, Weiner JH (2006). "The iron-sulfur clusters in Escherichia coli succinate dehydrogenase direct electron flow." J Biol Chem 281(37);27662-8. PMID: 16864590

Condon85: Condon C, Cammack R, Patil DS, Owen P (1985). "The succinate dehydrogenase of Escherichia coli. Immunochemical resolution and biophysical characterization of a 4-subunit enzyme complex." J Biol Chem 1985;260(16);9427-34. PMID: 2991245

Creaghan78: Creaghan IT, Guest JR (1978). "Succinate dehydrogenase-dependent nutritional requirement for succinate in mutants of Escherichia coli K12." J Gen Microbiol 107(1);1-13. PMID: 366070

Darlison84a: Darlison MG, Guest JR (1984). "Nucleotide sequence encoding the iron-sulphur protein subunit of the succinate dehydrogenase of Escherichia coli." Biochem J 1984;223(2);507-17. PMID: 6388571

GOA00: GOA (2000). "Gene Ontology annotation based on Swiss-Prot keyword mapping."

GOA01: GOA, DDB, FB, MGI, ZFIN (2001). "Gene Ontology annotation through association of InterPro records with GO terms."

GOA01a: GOA, MGI (2001). "Gene Ontology annotation based on Enzyme Commission mapping." Genomics 74;121-128.

Guest81: Guest JR (1981). "Partial replacement of succinate dehydrogenase function by phage- and plasmid-specified fumarate reductase in Escherichia coli." J Gen Microbiol 122(Pt 2);171-9. PMID: 6274999

Gunsalus: Gunsalus RP, Park SJ "Aerobic-anaerobic gene regulation in Escherichia coli: control by the ArcAB and Fnr regulons." Res Microbiol 145(5-6);437-50. PMID: 7855430

Hagerhall96: Hagerhall C, Hederstedt L (1996). "A structural model for the membrane-integral domain of succinate: quinone oxidoreductases." FEBS Lett 389(1);25-31. PMID: 8682198

Hederstedt03: Hederstedt L (2003). "Structural biology. Complex II is complex too." Science 299(5607);671-2. PMID: 12560540

Hederstedt81: Hederstedt L, Rutberg L (1981). "Succinate dehydrogenase--a comparative review." Microbiol Rev 1981;45(4);542-55. PMID: 6799760

Hirsch63: Hirsch CA, Rasminsky M, Davis BD, Lin EC (1963). "A fumarate reductase in Escherichia coli distinct from succinate dehydrogenase." J Biol Chem 238;3770-4. PMID: 14109218

Horsefield06: Horsefield R, Yankovskaya V, Sexton G, Whittingham W, Shiomi K, Omura S, Byrne B, Cecchini G, Iwata S (2006). "Structural and computational analysis of the quinone-binding site of complex II (succinate-ubiquinone oxidoreductase): a mechanism of electron transfer and proton conduction during ubiquinone reduction." J Biol Chem 281(11);7309-16. PMID: 16407191

Iuchi89: Iuchi S, Cameron DC, Lin EC (1989). "A second global regulator gene (arcB) mediating repression of enzymes in aerobic pathways of Escherichia coli." J Bacteriol 171(2);868-73. PMID: 2644240

Iuchi94: Iuchi S, Aristarkhov A, Dong JM, Taylor JS, Lin EC (1994). "Effects of nitrate respiration on expression of the Arc-controlled operons encoding succinate dehydrogenase and flavin-linked L-lactate dehydrogenase." J Bacteriol 1994;176(6);1695-701. PMID: 8132465

Johnson85: Johnson MK, Morningstar JE, Bennett DE, Ackrell BA, Kearney EB (1985). "Magnetic circular dichroism studies of succinate dehydrogenase. Evidence for [2Fe-2S], [3Fe-xS], and [4Fe-4S] centers in reconstitutively active enzyme." J Biol Chem 260(12);7368-78. PMID: 2987254

Kita78: Kita K, Yamato I, Anraku Y (1978). "Purification and properties of cytochrome b556 in the respiratory chain of aerobically grown Escherichia coli K12." J Biol Chem 253(24);8910-5. PMID: 363711

Kita89: Kita K, Vibat CR, Meinhardt S, Guest JR, Gennis RB (1989). "One-step purification from Escherichia coli of complex II (succinate: ubiquinone oxidoreductase) associated with succinate-reducible cytochrome b556." J Biol Chem 264(5);2672-7. PMID: 2644269

Maklashina01: Maklashina E, Rothery RA, Weiner JH, Cecchini G (2001). "Retention of heme in axial ligand mutants of succinate-ubiquinone xxidoreductase (complex II) from Escherichia coli." J Biol Chem 276(22);18968-76. PMID: 11259408

Maklashina98: Maklashina E, Berthold DA, Cecchini G (1998). "Anaerobic expression of Escherichia coli succinate dehydrogenase: functional replacement of fumarate reductase in the respiratory chain during anaerobic growth." J Bacteriol 180(22);5989-96. PMID: 9811659

Maklashina99: Maklashina E, Cecchini G (1999). "Comparison of catalytic activity and inhibitors of quinone reactions of succinate dehydrogenase (Succinate-ubiquinone oxidoreductase) and fumarate reductase (Menaquinol-fumarate oxidoreductase) from Escherichia coli." Arch Biochem Biophys 1999;369(2);223-32. PMID: 10486141

Morningstar85: Morningstar JE, Johnson MK, Cecchini G, Ackrell BA, Kearney EB (1985). "The high potential iron-sulfur center in Escherichia coli fumarate reductase is a three-iron cluster." J Biol Chem 260(25);13631-8. PMID: 2997176

Nakamura96: Nakamura K, Yamaki M, Sarada M, Nakayama S, Vibat CR, Gennis RB, Nakayashiki T, Inokuchi H, Kojima S, Kita K (1996). "Two hydrophobic subunits are essential for the heme b ligation and functional assembly of complex II (succinate-ubiquinone oxidoreductase) from Escherichia coli." J Biol Chem 271(1);521-7. PMID: 8550613

Nihei01: Nihei C, Nakayashiki T, Nakamura K, Inokuchi H, Gennis RB, Kojima S, Kita K (2001). "Abortive assembly of succinate-ubiquinone reductase (complex II) in a ferrochelatase-deficient mutant of Escherichia coli." Mol Genet Genomics 265(3);394-404. PMID: 11405622

Ohnishi87: Ohnishi T "Structure of the succinate-ubiquinone oxidoreductase (complex II)." Current Topics in Bioenergetics 1987;15:37-65.

Park95a: Park SJ, Tseng CP, Gunsalus RP (1995). "Regulation of succinate dehydrogenase (sdhCDAB) operon expression in Escherichia coli in response to carbon supply and anaerobiosis: role of ArcA and Fnr." Mol Microbiol 15(3);473-82. PMID: 7783618

Park97: Park SJ, Chao G, Gunsalus RP (1997). "Aerobic regulation of the sucABCD genes of Escherichia coli, which encode alpha-ketoglutarate dehydrogenase and succinyl coenzyme A synthetase: roles of ArcA, Fnr, and the upstream sdhCDAB promoter." J Bacteriol 179(13);4138-42. PMID: 9209026

Pershad99: Pershad HR, Hirst J, Cochran B, Ackrell BA, Armstrong FA (1999). "Voltammetric studies of bidirectional catalytic electron transport in Escherichia coli succinate dehydrogenase: comparison with the enzyme from beef heart mitochondria." Biochim Biophys Acta 1412(3);262-72. PMID: 10482788

Rajagopala14: Rajagopala SV, Sikorski P, Kumar A, Mosca R, Vlasblom J, Arnold R, Franca-Koh J, Pakala SB, Phanse S, Ceol A, Hauser R, Siszler G, Wuchty S, Emili A, Babu M, Aloy P, Pieper R, Uetz P (2014). "The binary protein-protein interaction landscape of Escherichia coli." Nat Biotechnol 32(3);285-90. PMID: 24561554

Ruprecht09: Ruprecht J, Yankovskaya V, Maklashina E, Iwata S, Cecchini G (2009). "Structure of Escherichia coli succinate:quinone oxidoreductase with an occupied and empty quinone-binding site." J Biol Chem 284(43);29836-46. PMID: 19710024

Salmon05: Salmon KA, Hung SP, Steffen NR, Krupp R, Baldi P, Hatfield GW, Gunsalus RP (2005). "Global gene expression profiling in Escherichia coli K12: effects of oxygen availability and ArcA." J Biol Chem 280(15);15084-96. PMID: 15699038

Shen97: Shen J, Gunsalus RP (1997). "Role of multiple ArcA recognition sites in anaerobic regulation of succinate dehydrogenase (sdhCDAB) gene expression in Escherichia coli." Mol Microbiol 26(2);223-36. PMID: 9383149

Shimizu08: Shimizu H, Nihei C, Inaoka DK, Mogi T, Kita K, Harada S (2008). "Screening of detergents for solubilization, purification and crystallization of membrane proteins: a case study on succinate:ubiquinone oxidoreductase from Escherichia coli." Acta Crystallogr Sect F Struct Biol Cryst Commun 64(Pt 9);858-62. PMID: 18765923

Sousa11: Sousa PM, Silva ST, Hood BL, Charro N, Carita JN, Vaz F, Penque D, Conrads TP, Melo AM (2011). "Supramolecular organizations in the aerobic respiratory chain of Escherichia coli." Biochimie 93(3);418-25. PMID: 21040753

Spencer74: Spencer ME, Guest JR (1974). "Proteins of the inner membrane of Escherichia coli: identification of succinate dehydrogenase by polyacrylamide gel electrophoresis with sdh amber mutants." J Bacteriol 117(3);947-53. PMID: 4591960

Stenberg05: Stenberg F, Chovanec P, Maslen SL, Robinson CV, Ilag LL, von Heijne G, Daley DO (2005). "Protein complexes of the Escherichia coli cell envelope." J Biol Chem 280(41);34409-19. PMID: 16079137

Tomasiak08: Tomasiak TM, Maklashina E, Cecchini G, Iverson TM (2008). "A threonine on the active site loop controls transition state formation in Escherichia coli respiratory complex II." J Biol Chem 283(22);15460-8. PMID: 18385138

Tornroth02: Tornroth S, Yankovskaya V, Cecchini G, Iwata S (2002). "Purification, crystallisation and preliminary crystallographic studies of succinate:ubiquinone oxidoreductase from Escherichia coli." Biochim Biophys Acta 1553(1-2);171-6. PMID: 11803025

Tran06: Tran QM, Rothery RA, Maklashina E, Cecchini G, Weiner JH (2006). "The quinone binding site in Escherichia coli succinate dehydrogenase is required for electron transfer to the heme b." J Biol Chem 281(43);32310-7. PMID: 16950775

UniProt09: UniProt Consortium (2009). "UniProt version 15.8 released on 2009-10-01 00:00:00." Database.

UniProt10a: UniProt Consortium (2010). "UniProt version 2010-11 released on 2010-11-02 00:00:00." Database.

UniProtGOA11: UniProt-GOA (2011). "Gene Ontology annotation based on manual assignment of UniProtKB keywords in UniProtKB/Swiss-Prot entries."

UniProtGOA11a: UniProt-GOA (2011). "Gene Ontology annotation based on the manual assignment of UniProtKB Subcellular Location terms in UniProtKB/Swiss-Prot entries."

UniProtGOA12: UniProt-GOA (2012). "Gene Ontology annotation based on UniPathway vocabulary mapping."

Vibat98: Vibat CR, Cecchini G, Nakamura K, Kita K, Gennis RB (1998). "Localization of histidine residues responsible for heme axial ligation in cytochrome b556 of complex II (succinate:ubiquinone oxidoreductase) in Escherichia coli." Biochemistry 37(12);4148-59. PMID: 9521736

Werth92: Werth MT, Sices H, Cecchini G, Schroder I, Lasage S, Gunsalus RP, Johnson MK (1992). "Evidence for non-cysteinyl coordination of the [2Fe-2S] cluster in Escherichia coli succinate dehydrogenase." FEBS Lett 299(1);1-4. PMID: 1312028

Wilde86: Wilde RJ, Guest JR (1986). "Transcript analysis of the citrate synthase and succinate dehydrogenase genes of Escherichia coli K12." J Gen Microbiol 1986;132 ( Pt 12);3239-51. PMID: 3309132

Wood84: Wood D, Darlison MG, Wilde RJ, Guest JR (1984). "Nucleotide sequence encoding the flavoprotein and hydrophobic subunits of the succinate dehydrogenase of Escherichia coli." Biochem J 1984;222(2);519-34. PMID: 6383359

Yang97a: Yang X, Yu L, Yu CA (1997). "Resolution and reconstitution of succinate-ubiquinone reductase from Escherichia coli." J Biol Chem 272(15);9683-9. PMID: 9092498

Yang98a: Yang X, Yu L, He D, Yu CA (1998). "The quinone-binding site in succinate-ubiquinone reductase from Escherichia coli. Quinone-binding domain and amino acid residues involved in quinone binding." J Biol Chem 273(48);31916-23. PMID: 9822661

Yankovskaya03: Yankovskaya V, Horsefield R, Tornroth S, Luna-Chavez C, Miyoshi H, Leger C, Byrne B, Cecchini G, Iwata S (2003). "Architecture of succinate dehydrogenase and reactive oxygen species generation." Science 299(5607);700-4. PMID: 12560550

ZhdanPushkina86: Zhdan-Pushkina SM, Verbitskaia NB, Kondrat'eva LD (1986). "[Succinate dehydrogenase activity of Escherichia coli cells after heat stress and during the reparative process]." Mikrobiologiia 55(3);357-61. PMID: 3528770

Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of MetaCyc: Caspi et al, Nucleic Acids Research 42:D459-D471 2014
Page generated by SRI International Pathway Tools version 18.5 on Thu Mar 5, 2015, BIOCYC13B.