Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
BioCyc websites down
12/28 - 12/31
for maintenance.
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
BioCyc websites down
12/28 - 12/31
for maintenance.
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
BioCyc websites down
12/28 - 12/31
for maintenance.
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
BioCyc websites down
12/28 - 12/31
for maintenance.
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
BioCyc websites down
12/28 - 12/31
for maintenance.
twitter

MetaCyc Reaction: 2.3.1.86

Superclasses: Reactions Classified By Conversion Type Simple Reactions Chemical Reactions
Reactions Classified By Substrate Small-Molecule Reactions

EC Number: 2.3.1.86

Enzymes and Genes:
fatty acid synthase Inferred from experiment : FAS2 , FAS1 ( Saccharomyces cerevisiae )

In Pathway: fatty acids biosynthesis (yeast)

The reaction direction shown, that is, A + B ↔ C + D versus C + D ↔ A + B, is in accordance with the Enzyme Commission system.

Most BioCyc compounds have been protonated to a reference pH value of 7.3, and some reactions have been computationally balanced for hydrogen by adding free protons. Please see the PGDB Concepts Guide for more information.

Mass balance status: Undetermined; a substrate has a non-numerical coefficient

Enzyme Commission Primary Name: fatty-acyl-CoA synthase

Enzyme Commission Synonyms: yeast fatty acid synthase, FAS1 (gene name), FAS2 (gene name)

Enzyme Commission Summary:
The enzyme from yeasts (Ascomycota and Basidiomycota) is a multi-functional protein complex composed of two subunits.One subunit catalyses the reactions EC 1.1.1.100, 3-oxoacyl-[acyl-carrier-protein] reductase and EC 2.3.1.41, β-ketoacyl-[acyl-carrier-protein] synthase I, while the other subunit catalyses the reactions of EC 2.3.1.38, [acyl-carrier-protein] S-acetyltransferase, EC 2.3.1.39, [acyl-carrier-protein] S-malonyltransferase, EC 4.2.1.59, 3-hydroxyacyl-[acyl-carrier-protein] dehydratase, EC 1.3.1.10, enoyl-[acyl-carrier-protein] reductase (NADPH, Si-specific) and EC 1.1.1.279, (R)-3-hydroxyacid-ester dehydrogenase. The enzyme differs from the animal enzyme (EC 2.3.1.85) in that the enoyl reductase domain requires FMN as a cofactor, and the ultimate product is an acyl-CoA (usually palmitoyl-CoA) instead of a free fatty acid.

Citations: [Schweizer73, Wakil83, Tehlivets07]

Gene-Reaction Schematic: ?

Unification Links: KEGG:R05190

Relationship Links: BRENDA:EC:2.3.1.86 , ENZYME:EC:2.3.1.86 , IUBMB-ExplorEnz:EC:2.3.1.86 , UniProt:RELATED-TO:P07149 , UniProt:RELATED-TO:P34229 , UniProt:RELATED-TO:P34731 , UniProt:RELATED-TO:Q9UUG0

Credits:
Revised 27-Sep-2012 by Caspi R , SRI International


References

Schweizer73: Schweizer E, Kniep B, Castorph H, Holzner U (1973). "Pantetheine-free mutants of the yeast fatty-acid-synthetase complex." Eur J Biochem 39(2);353-62. PMID: 4590449

Tehlivets07: Tehlivets O, Scheuringer K, Kohlwein SD (2007). "Fatty acid synthesis and elongation in yeast." Biochim Biophys Acta 1771(3);255-70. PMID: 16950653

Wakil83: Wakil SJ, Stoops JK, Joshi VC (1983). "Fatty acid synthesis and its regulation." Annu Rev Biochem 52;537-79. PMID: 6137188


Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of MetaCyc: Caspi et al, Nucleic Acids Research 42:D459-D471 2014
Page generated by SRI International Pathway Tools version 18.5 on Fri Dec 19, 2014, biocyc14.