Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
twitter

MetaCyc Reaction: [no EC number assigned]

Superclasses: Reactions Classified By Conversion Type Simple Reactions Chemical Reactions
Reactions Classified By Substrate Small-Molecule Reactions

In Pathway: seleno-amino acid detoxification and volatilization I

The reaction direction shown, that is, A + B ↔ C + D versus C + D ↔ A + B, is in accordance with the direction in which it was curated.

Mass balance status: Marked as unbalanced.

Standard Gibbs Free Energy (ΔrG in kcal/mol): -0.8269005 Inferred by computational analysis [Latendresse13]

Summary:
This reaction is predicted and remians to be validated experimentally [Lyi05].

Credits:
Created 07-Dec-2009 by Pujar A , Boyce Thompson Institute


References

Latendresse13: Latendresse M. (2013). "Computing Gibbs Free Energy of Compounds and Reactions in MetaCyc."

Lyi05: Lyi SM, Heller LI, Rutzke M, Welch RM, Kochian LV, Li L (2005). "Molecular and biochemical characterization of the selenocysteine Se-methyltransferase gene and Se-methylselenocysteine synthesis in broccoli." Plant Physiol 138(1);409-20. PMID: 15863700


Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of MetaCyc: Caspi et al, Nucleic Acids Research 42:D459-D471 2014
Page generated by SRI International Pathway Tools version 18.5 on Thu Dec 18, 2014, biocyc13.