Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
twitter

MetaCyc Reaction: 1.1.1.-

Superclasses: Reactions Classified By Conversion Type Simple Reactions Chemical Reactions
Reactions Classified By Substrate Small-Molecule Reactions

EC Number: 1.1.1.-

Enzymes and Genes:
retinol dehydrogenase 9 : DHRS9 ( Homo sapiens )
3α hydroxysteroid dehydrogenase III : AKR1C2 ( Homo sapiens )
3α-hydroxysteroid dehydrogenase Inferred from experiment ( Blautia producta K 2/25.1 )

In Pathway: glycocholate metabolism (bacteria)

The reaction direction shown, that is, A + B ↔ C + D versus C + D ↔ A + B, is in accordance with the direction in which it was curated.

Most BioCyc compounds have been protonated to a reference pH value of 7.3, and some reactions have been computationally balanced for hydrogen by adding free protons. Please see the PGDB Concepts Guide for more information.

Mass balance status: Balanced.

Enzyme Commission Primary Name: 1.1.1 -- With NAD(+) or NADP(+) as acceptor

Standard Gibbs Free Energy (ΔrG in kcal/mol): -0.37820435 Inferred by computational analysis [Latendresse13]

Citations: [Ridlon06]

Gene-Reaction Schematic: ?

Instance reactions of [allopregnanolone + NAD(P)+ ↔ 5-α-pregnane-3,20-dione + NAD(P)H + H+] (1.1.1.213):
i1: allopregnanolone + NAD+ → 5-α-pregnane-3,20-dione + NADH + H+ (1.1.-.-)

i2: allopregnanolone + NADP+ ← 5-α-pregnane-3,20-dione + NADPH + H+ (1.1.1.278)

Instance reactions of [testosterone + NAD(P)+ → androst-4-ene-3,17-dione + NAD(P)H + H+] (1.1.1.51):
i3: testosterone + NAD+ = androst-4-ene-3,17-dione + NADH + H+ (1.1.1.239)

i4: testosterone + NADP+ ← androst-4-ene-3,17-dione + NADPH + H+ (1.1.1.64)

Credits:
Created 02-Jun-2010 by Fulcher CA , SRI International


References

Latendresse13: Latendresse M. (2013). "Computing Gibbs Free Energy of Compounds and Reactions in MetaCyc."

Ridlon06: Ridlon JM, Kang DJ, Hylemon PB (2006). "Bile salt biotransformations by human intestinal bacteria." J Lipid Res 47(2);241-59. PMID: 16299351


Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of MetaCyc: Caspi et al, Nucleic Acids Research 42:D459-D471 2014
Page generated by SRI International Pathway Tools version 18.5 on Tue Nov 25, 2014, BIOCYC13A.