MetaCyc Reaction:

Superclasses: Reactions Classified By Conversion TypeSimple ReactionsChemical Reactions
Reactions Classified By SubstrateSmall-Molecule Reactions

EC Number:

In Pathway: seleno-amino acid biosynthesis

Note that this reaction equation differs from the official Enzyme Commission reaction equation for this EC number, which can be found here .

The direction shown, i.e. which substrates are on the left and right sides, is in accordance with the Enzyme Commission system.

Mass balance status: Balanced.

Enzyme Commission Primary Name: 5-methyltetrahydropteroyltriglutamate—homocysteine S-methyltransferase

Enzyme Commission Synonyms: tetrahydropteroyltriglutamate methyltransferase, homocysteine methylase, methyltransferase, tetrahydropteroylglutamate-homocysteine transmethylase, methyltetrahydropteroylpolyglutamate:homocysteine methyltransferase, cobalamin-independent methionine synthase, methionine synthase (cobalamin-independent), MetE

Standard Gibbs Free Energy (ΔrG in kcal/mol): -15.920031Inferred by computational analysis [Latendresse13]

The enzyme from Escherichia coli acts only on 5-methyl-tetrahydropteroylpolyglutamate (CH3-H4PteGlun) molecules which contain 2 or more glutamate residues [Zhou99].

Enzyme Commission Summary:
Escherichia coliThe enzyme from acts only on 5-methyl-tetrahydropteroylpolyglutamate (CH3-H4PteGlun) molecules which contain 2 or more glutamate residues [Zhou99].

Citations: [Zhou00, Gonzalez96, Eichel95, Whitfield70, Guest64a]

Unification Links: KEGG:R09365

Relationship Links: BRENDA:EC:, ENZYME:EC:, IUBMB-ExplorEnz:EC:

Created 07-Oct-2011 by Dreher KA, PMN


Eichel95: Eichel J, Gonzalez JC, Hotze M, Matthews RG, Schroder J (1995). "Vitamin-B12-independent methionine synthase from a higher plant (Catharanthus roseus). Molecular characterization, regulation, heterologous expression, and enzyme properties." Eur J Biochem 230(3);1053-8. PMID: 7601135

Gonzalez96: Gonzalez JC, Peariso K, Penner-Hahn JE, Matthews RG (1996). "Cobalamin-independent methionine synthase from Escherichia coli: a zinc metalloenzyme." Biochemistry 35(38);12228-34. PMID: 8823155

Guest64a: Guest JR, Friedman S, Foster MA, Tejerina G, Woods DD (1964). "Transfer of the methyl group from N5-methyltetrahydrofolates to homocysteine in Escherichia coli." Biochem J 92(3);497-504. PMID: 5319972

Latendresse13: Latendresse M. (2013). "Computing Gibbs Free Energy of Compounds and Reactions in MetaCyc."

Whitfield70: Whitfield CD, Steers EJ, Weisbach H (1970). "Purification and properties of 5-methyltetrahydropteroyltriglutamate-homocysteine transmethylase." J Biol Chem 1970;245(2);390-401. PMID: 4904482

Zhou00: Zhou ZS, Smith AE, Matthews RG (2000). "L-Selenohomocysteine: one-step synthesis from L-selenomethionine and kinetic analysis as substrate for methionine synthases." Bioorg Med Chem Lett 10(21);2471-5. PMID: 11078203

Zhou99: Zhou ZS, Peariso K, Penner-Hahn JE, Matthews RG (1999). "Identification of the zinc ligands in cobalamin-independent methionine synthase (MetE) from Escherichia coli." Biochemistry 1999;38(48);15915-26. PMID: 10625458

Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of MetaCyc: Caspi et al, Nucleic Acids Research 42:D459-D471 2014
Page generated by Pathway Tools version 19.5 (software by SRI International) on Thu May 5, 2016, biocyc14.