Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
BioCyc websites down
12/28 - 12/31
for maintenance.
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
BioCyc websites down
12/28 - 12/31
for maintenance.
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
BioCyc websites down
12/28 - 12/31
for maintenance.
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
BioCyc websites down
12/28 - 12/31
for maintenance.
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
BioCyc websites down
12/28 - 12/31
for maintenance.
twitter

MetaCyc Reaction: 2.1.1.247

Superclasses: Reactions Classified By Conversion Type Simple Reactions Chemical Reactions Protein-Modification Reactions
Reactions Classified By Substrate Macromolecule Reactions Protein-Reactions Protein-Modification Reactions

EC Number: 2.1.1.247

Enzymes and Genes:
methylated [methylamine-specific corrinoid protein]:coenzyme M methyltransferase Inferred from experiment : mtbA ( Methanosarcina barkeri )

In Pathway: methanogenesis from trimethylamine

Note that this reaction equation differs from the official Enzyme Commission reaction equation for this EC number, which can be found here .

The reaction direction shown, that is, A + B ↔ C + D versus C + D ↔ A + B, is in accordance with the Enzyme Commission system.

Mass balance status: Undetermined; a substrate lacks a chemical formula

Enzyme Commission Primary Name: [methyl-Co(III) methylamine-specific corrinoid protein]:coenzyme M methyltransferase

Enzyme Commission Synonyms: methyltransferase 2 (ambiguous), MT2 (ambiguous), MT2-A, mtbA (gene name)

Enzyme Commission Summary:
Contains zinc [LeClerc96]. The enzyme, which is involved in methanogenesis from mono-, di-, and trimethylamine, catalyses the transfer of a methyl group bound to the cobalt cofactor of several corrinoid proteins (mono-, di-, and trimethylamine-specific corrinoid proteins (cf. EC 2.1.1.248, methylamine—corrinoid protein Co-methyltransferase, EC 2.1.1.249, dimethylamine—corrinoid protein Co-methyltransferase, and EC 2.1.1.250, trimethylamine—corrinoid protein Co-methyltransferase) to coenzyme M, forming the substrate for EC 2.8.4.1, coenzyme-B sulfoethylthiotransferase, the enzyme that catalyses the final step in methanogenesis.

Citations: [Burke95, Ferguson97, Burke98, Ferguson00]

Gene-Reaction Schematic: ?

Relationship Links: BRENDA:EC:2.1.1.247 , ENZYME:EC:2.1.1.247 , IUBMB-ExplorEnz:EC:2.1.1.247


References

Burke95: Burke SA, Krzycki JA (1995). "Involvement of the "A" isozyme of methyltransferase II and the 29-kilodalton corrinoid protein in methanogenesis from monomethylamine." J Bacteriol 177(15);4410-6. PMID: 7635826

Burke98: Burke SA, Lo SL, Krzycki JA (1998). "Clustered genes encoding the methyltransferases of methanogenesis from monomethylamine." J Bacteriol 180(13);3432-40. PMID: 9642198

Ferguson00: Ferguson DJ, Gorlatova N, Grahame DA, Krzycki JA (2000). "Reconstitution of dimethylamine:coenzyme M methyl transfer with a discrete corrinoid protein and two methyltransferases purified from Methanosarcina barkeri." J Biol Chem 275(37);29053-60. PMID: 10852929

Ferguson97: Ferguson DJ, Krzycki JA (1997). "Reconstitution of trimethylamine-dependent coenzyme M methylation with the trimethylamine corrinoid protein and the isozymes of methyltransferase II from Methanosarcina barkeri." J Bacteriol 179(3);846-52. PMID: 9006042

LeClerc96: LeClerc GM, Grahame DA (1996). "Methylcobamide:coenzyme M methyltransferase isozymes from Methanosarcina barkeri. Physicochemical characterization, cloning, sequence analysis, and heterologous gene expression." J Biol Chem 1996;271(31);18725-31. PMID: 8702528


Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of MetaCyc: Caspi et al, Nucleic Acids Research 42:D459-D471 2014
Page generated by SRI International Pathway Tools version 18.5 on Sun Dec 21, 2014, BIOCYC13B.