Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
twitter

MetaCyc Reaction: 2.1.1.247

Superclasses: Reactions Classified By Conversion Type Simple Reactions Chemical Reactions Protein-Modification Reactions
Reactions Classified By Substrate Macromolecule Reactions Protein-Reactions Protein-Modification Reactions

EC Number: 2.1.1.247

Enzymes and Genes:
methylated [methylamine-specific corrinoid protein]:coenzyme M methyltransferase Inferred from experiment : mtbA ( Methanosarcina barkeri )

In Pathway: methanogenesis from trimethylamine

Note that this reaction equation differs from the official Enzyme Commission reaction equation for this EC number, which can be found here .

The reaction direction shown, that is, A + B ↔ C + D versus C + D ↔ A + B, is in accordance with the Enzyme Commission system.

Mass balance status: Undetermined; a substrate lacks a chemical formula

Enzyme Commission Primary Name: [methyl-Co(III) methylamine-specific corrinoid protein]:coenzyme M methyltransferase

Enzyme Commission Synonyms: methyltransferase 2 (ambiguous), MT2 (ambiguous), MT2-A, mtbA (gene name)

Enzyme Commission Summary:
Contains zinc [LeClerc96]. The enzyme, which is involved in methanogenesis from mono-, di-, and trimethylamine, catalyses the transfer of a methyl group bound to the cobalt cofactor of several corrinoid proteins (mono-, di-, and trimethylamine-specific corrinoid proteins (cf. EC 2.1.1.248, methylamine—corrinoid protein Co-methyltransferase, EC 2.1.1.249, dimethylamine—corrinoid protein Co-methyltransferase, and EC 2.1.1.250, trimethylamine—corrinoid protein Co-methyltransferase) to coenzyme M, forming the substrate for EC 2.8.4.1, coenzyme-B sulfoethylthiotransferase, the enzyme that catalyses the final step in methanogenesis.

Citations: [Burke95, Ferguson97a, Burke98, Ferguson00b]

Gene-Reaction Schematic: ?

Relationship Links: BRENDA:EC:2.1.1.247 , ENZYME:EC:2.1.1.247 , IUBMB-ExplorEnz:EC:2.1.1.247


References

Burke95: Burke SA, Krzycki JA (1995). "Involvement of the "A" isozyme of methyltransferase II and the 29-kilodalton corrinoid protein in methanogenesis from monomethylamine." J Bacteriol 177(15);4410-6. PMID: 7635826

Burke98: Burke SA, Lo SL, Krzycki JA (1998). "Clustered genes encoding the methyltransferases of methanogenesis from monomethylamine." J Bacteriol 180(13);3432-40. PMID: 9642198

Ferguson00b: Ferguson DJ, Gorlatova N, Grahame DA, Krzycki JA (2000). "Reconstitution of dimethylamine:coenzyme M methyl transfer with a discrete corrinoid protein and two methyltransferases purified from Methanosarcina barkeri." J Biol Chem 275(37);29053-60. PMID: 10852929

Ferguson97a: Ferguson DJ, Krzycki JA (1997). "Reconstitution of trimethylamine-dependent coenzyme M methylation with the trimethylamine corrinoid protein and the isozymes of methyltransferase II from Methanosarcina barkeri." J Bacteriol 179(3);846-52. PMID: 9006042

LeClerc96: LeClerc GM, Grahame DA (1996). "Methylcobamide:coenzyme M methyltransferase isozymes from Methanosarcina barkeri. Physicochemical characterization, cloning, sequence analysis, and heterologous gene expression." J Biol Chem 1996;271(31);18725-31. PMID: 8702528


Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of MetaCyc: Caspi et al, Nucleic Acids Research 42:D459-D471 2014
Page generated by SRI International Pathway Tools version 18.5 on Sat Nov 22, 2014, BIOCYC14A.