Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
twitter

MetaCyc Reaction: 2.7.7.63

Superclasses: Reactions Classified By Conversion Type Simple Reactions Chemical Reactions Protein-Modification Reactions
Reactions Classified By Substrate Macromolecule Reactions Protein-Reactions Protein-Modification Reactions

EC Number: 2.7.7.63

Enzymes and Genes:
lipoyl-protein ligase A Inferred from experiment : lplA ( Escherichia coli K-12 substr. MG1655 )
lipoate-protein ligase Inferred from experiment : lplJ ( Bacillus subtilis subtilis 168 )
lipoate-protein ligase A Inferred from experiment : lplA , lplB ( Thermoplasma acidophilum )

In Pathway: lipoate salvage I

The reaction direction shown, that is, A + B ↔ C + D versus C + D ↔ A + B, is in accordance with the Enzyme Commission system.

Most BioCyc compounds have been protonated to a reference pH value of 7.3, and some reactions have been computationally balanced for hydrogen by adding free protons. Please see the PGDB Concepts Guide for more information.

Mass balance status: Balanced.

Enzyme Commission Primary Name: lipoate—protein ligase

Enzyme Commission Synonyms: LplA, lipoate protein ligase, lipoate-protein ligase A, LPL, LPL-B

Standard Gibbs Free Energy (ΔrG in kcal/mol): -85.63157 Inferred by computational analysis [Latendresse13]

Enzyme Commission Summary:
Requires Mg2+. Both 6S- and 6R-lipoates can act as substrates but there is a preference for the naturally occurring R-form. Selenolipoate, i.e. 5-(1,2-diselenolan-3-yl)pentanoic acid, and 6-sulfanyloctanoate can also act as substrates, but more slowly [Green95]. Responsible for lipoylation in the presence of exogenous lipoic acid. Lipoylation is essential for the function of several key enzymes involved in oxidative metabolism, including pyruvate dehydrogenase (E(2) domain), 2-oxoglutarate dehydrogenase (E(2) domain), the branched-chain 2-oxoacid dehydrogenases and the glycine cleavage system (H protein) [Jordan97]. Attaches lipoic acid to the lipoyl domains of these proteins. It is likely that an alternative pathway, involving EC 2.3.1.181 and EC 2.8.1.8 is the normal route for lipoylation [Perham00].

Citations: [Morris94, Zhao03d, Kim05a, Fujiwara05]

Gene-Reaction Schematic: ?

Unification Links: KEGG:R07771

Relationship Links: BRENDA:EC:2.7.7.63 , ENZYME:EC:2.7.7.63 , IUBMB-ExplorEnz:EC:2.7.7.63


References

Fujiwara05: Fujiwara K, Toma S, Okamura-Ikeda K, Motokawa Y, Nakagawa A, Taniguchi H (2005). "Crystal structure of lipoate-protein ligase A from Escherichia coli. Determination of the lipoic acid-binding site." J Biol Chem 280(39);33645-51. PMID: 16043486

Green95: Green DE, Morris TW, Green J, Cronan JE, Guest JR (1995). "Purification and properties of the lipoate protein ligase of Escherichia coli." Biochem J 309 ( Pt 3);853-62. PMID: 7639702

Jordan97: Jordan SW, Cronan JE (1997). "A new metabolic link. The acyl carrier protein of lipid synthesis donates lipoic acid to the pyruvate dehydrogenase complex in Escherichia coli and mitochondria." J Biol Chem 272(29);17903-6. PMID: 9218413

Kim05a: Kim DJ, Kim KH, Lee HH, Lee SJ, Ha JY, Yoon HJ, Suh SW (2005). "Crystal structure of lipoate-protein ligase A bound with the activated intermediate: insights into interaction with lipoyl domains." J Biol Chem 280(45);38081-9. PMID: 16141198

Latendresse13: Latendresse M. (2013). "Computing Gibbs Free Energy of Compounds and Reactions in MetaCyc."

Morris94: Morris TW, Reed KE, Cronan JE (1994). "Identification of the gene encoding lipoate-protein ligase A of Escherichia coli. Molecular cloning and characterization of the lplA gene and gene product." J Biol Chem 269(23);16091-100. PMID: 8206909

Perham00: Perham RN (2000). "Swinging arms and swinging domains in multifunctional enzymes: catalytic machines for multistep reactions." Annu Rev Biochem 69;961-1004. PMID: 10966480

Zhao03d: Zhao X, Miller JR, Jiang Y, Marletta MA, Cronan JE (2003). "Assembly of the covalent linkage between lipoic acid and its cognate enzymes." Chem Biol 10(12);1293-302. PMID: 14700636


Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of MetaCyc: Caspi et al, Nucleic Acids Research 42:D459-D471 2014
Page generated by SRI International Pathway Tools version 18.5 on Wed Nov 26, 2014, biocyc13.